• Title/Summary/Keyword: 매트 매스콘크리트

Search Result 19, Processing Time 0.026 seconds

A Method on the Control of Hydration Heat of Mass Concrete Considering Difference of Setting Time (응결 시간차를 활용한 매스 콘크리트의 수화열 조정 공법)

  • 심보길;윤치환;오선교;최주석;한천구
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-52
    • /
    • 2002
  • 종전의 경우 건축물의 기초 구조는 직접 기초 및 말뚝 기초 등이 많이 활용되었으나 최근에는 말뚝 기초의 경우 소음, 진동 등의 환경 문제가 중요시됨에 따라 대부분 매트 기초로 시공하는 경우가 많아졌다. 따라서, 기초 부분의 매트 콘크리트 시공은 환경 문제를 해결하고 건물의 하부구조를 안전하게 지탱하게 하는 역할은 만족되었지만. 두께가 80cm를 넘어 매스 콘크리트로 되는 경우가 많아 수화열에 의한 균열 문제 등은 콘크리트의 품질 확보에 있어 새롭게 해결해야만 하는 중요한 과제로 등장하고 있다.(중략)

Method of Decreasing Cracking Index by Different Mix Conditions for Separated Placement and its Field Application (콘크리트 배합요인별 상·하부 분리타설에 의한 수화열 균열지수 저감방안 및 현장적용)

  • Kim, Min-Ho;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.292-298
    • /
    • 2016
  • In this research, considering the practical situation of separated placing method for mass concrete structure, an efficient method of controlling the heat of hydration is suggested by comparing between the simulated values and actual measurements conducted with the optimum mix design obtained from the various mix conditions with different types and amount of supplementary cementitious materials(SCMs). As the result of the research, firstly, the optimum mix designs for top and bottom layers were determined by Midas gen as OPC to FA of 85 to 15, and OPC to FA to BS of 50 to 20 to 30, respectively. The concrete mixtures prepared with the mix designs determined from the simulation satisfied the target performance range in slump, air content and compressive strength. Additionally, from temperature measurement for the actual mass concrete placed during spring, the maximum temperature difference between surface and core was about $10^{\circ}C$ with 59 and $49^{\circ}C$ for top and bottom layers, respectively, and 1.4 of cracking index was obtained. Therefore, considering the practical conditions of mass concrete construction, it is considered that the different heat of hydration method using different mix designs with SCMs can be an efficient method for controlling thermal cracking and settling cracking of mass concrete.

Reducing Thermal Cracking of Mat-foundation Mass Concrete Applying Different Mix Designs for Upper and Lower Placement Lifts (상하부 배합을 달리함에 의한 기초 매트 매스콘크리트의 수화열 균열저감)

  • Han, Cheon-Gu;Kim, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this research, considering the practical conditions at field, thermal cracking reducing method was suggested based on the comparative analysis between predicted value and actual value obtained from the actual structure member with optimum mix design. The optimum mix design was deduced from the various mix designs with various proportions of cementitious binder for upper and lower placement lifts of mat-foundation mass concrete. Therefore, before field applications, the mix designs were obtained from the theoretical analysis obtained by MIDAS GEN for upper lift was OPC to FA of 85 to 15, and for lower lift was OPC to FA to BS of 50 : 20 : 30. Based on this mix design, the actual concrete for field was determined and all concrete properties were reached within the predicted range. Especially, the temperature properties of mass concrete at core was approximately $39^{\circ}C$ of temperature difference for low-heat mix design, while approximately $54^{\circ}C$ was shown for normal mix design currently used. Additionally, in the case of cracking index, the low heat mix design showed about 1.4 of relatively high value while the normal mix design showed 1.0. Therefore, it can be stated that applying low heat mix design and different heating technique between upper and lower placement lifts for mass concrete are efficient to control the thermal cracking.

Mock-up Test of Improving Super Retarding Concrete to Control of Hydration Heat Crack of Foundation Mat Mass Concrete (기초매트 매스콘크리트의 수화열 균열제어로서 초지연콘크리트 활용에 관한 Mock-up 실험)

  • Lee, Jae-Sam;Bae, Yeoun-Ki;Noh, Sang-Kyun;Kim, Suk-Il;Chung, Sung-Jin;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.777-780
    • /
    • 2008
  • According to the recent tendency that the buildings in the downtown are gradually Manhattanized, the very thick massive concrete is selected as the foundation of architectures. By the way, because this mass concrete cannot be simultaneously pour in a great quantity due to the circumstance at the field, not only the questions on the unification between the concretes pour on the upper layer and the lower layer are presented but also the cracks by the internal force from the difference of hydration exothermic period are occurred, which are pointed out as the problems. Thus, this study performed Mock-up test to apply the hydration heat controlling method of massive concrete for horizontal partition pouring construction to the building sites for the purpose of securing the stability on the cracks by the internal force from the difference of hydration exothermic period on the upper layer and the lower layer of massive concrete and checked the efficiency. As the results of test, in case of setting time difference method by super retarder with 2 layers and 4 layers, the effect that temperature gaps between upper part and lower part were lowered and the possibility of crack occurrence was decreased as the peak time of the heat of hydration became delayed to the latter term could be confirmed.

  • PDF

Development of Temperature-Aanalysis Program for Mass Concrete Using Finite Element Method (유한요소법에 의한 매스콘크리트 구조물의 온도해석 프로그램 개발)

  • 김은겸;김래현;신치범
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.167-175
    • /
    • 1995
  • A temperature-analysis program, named ${\ulcorner}TAMCON{\lrcorner}$, was developed to predict the temperature rise due to the heat of hydration in hardening concrete. Finite element method was employed to facilitate the temperature analysis for the structures with complex geometry and various boundary conditions. In order to test the validity of the program, the results obtained from TAMCON for the wall-t.ype structure and the mat foundation were compared with the numerical analysis anti experimental data reported previously. As a result, it was found that they were in good agreement. TAMCON may be useful for the temperature control to restrain thermal cracking and the construction management to design the reasonable curing method in mass concrete.

Field Application of a Technique for Reducing Hydration Heat-induced Cracks in Mass Concrete (수화발열량차 공법을 이용한 매트기초 매스콘크리트 균열저감 및 현장적용)

  • Jo, Man-Ki;Kim, Jun-Ho;Heo, Young-Sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.55-57
    • /
    • 2012
  • In this study, the field applicability on reducing the heat of hydration of mass concrete by using the hydration heat difference method is analyzed with the following summary. As a result of applying the hydration heat difference method by using low heating combination, the temperature difference between the central part and the surface part of mass material was reduced, and as a result of visual observation, there was no showing of cracks by the hydration heat on the upper surface part. Therefore, the cracking index of the field to apply this method was shown to be approximately 1.57 with very little crack occurrence probability of less than 3%.

  • PDF