• Title/Summary/Keyword: 매체순환연소

Search Result 43, Processing Time 0.029 seconds

Chemical Looping Combustion Characteristics of Coal and Char in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 석탄과 촤의 매체순환연소 특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Young-Joo;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.884-894
    • /
    • 2011
  • Effects of temperature, volatile content, particle diameter and solid input weight were investigated in the batch fluidized bed reactor using OCN703-1100 particle as oxygen carrier and Roto coal and char as fuels. Two solid fuels represented the best reactivity at different temperature, $900^{\circ}C$ for Roto coal and $950^{\circ}C$ for char, respectively. However, we selected $900^{\circ}C$ as the best operating temperature because the improvement of reactivity of char at $950^{\circ}C$ was negligible. Char represented better reactivity than Roto coal because char contains low volatile than Roto coal. For both solid fuels, reactivities were improved with increasing of the particle diameter. These results were explained by solid mixing tests in a transparent fluidized bed using two char particles having different particle size ranges and OCN703-1100 particle. The bigger particle showed better solid mixing with OCN703-1100 particle, and therefore, represented better reactivity. For both solid fuels, reactivities were improved with increasing of the solid input weight within the experimental conditions of this study because the weight of coarse particles increased with the solid input weight increased, and therefore, these coarse particles can mix well with the oxygen carrier.

Performance Prediction of 3 MWth Chemical Looping Combustion System with Change of Operating Variables (3 MWth 급 매체순환연소 시스템의 운전변수 변화에 따른 성능 예측)

  • RYU, HO-JUNG;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;KIM, DAEWOOK;KIM, DONG-WON;LEE, GYU-HWA;CHOUN, MYOUNGHOON;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.419-429
    • /
    • 2022
  • Effects of operating variables on temperature profile and performance of 3 MWth chemical looping combustion system were estimated by mass and energy balance analysis based on configuration and dimension of the system determined by design tool. Air reactor gas velocity, fuel reactor gas velocity, solid circulation rate, and solid input percentage to fluidized bed heat exchanger were considered as representative operating variables. Overall heat output and oxygen concentration in the exhaust gas from the air reactor increased but temperature difference decreased as air reactor gas velocity increased. Overall heat output, required solid circulation rate, and temperature difference increased as fuel reactor gas velocity increased. However, overall heat output and temperature difference decreased as solid circulation rate increased. Temperature difference decreased as solid circulation rate through the fluidized bed heat exchanger increased. Effect of each variables on temperature profile and performance can be determined and these results will be helpful to determine operating range of each variable.

LNG Combustion Characteristics of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 산소공여입자의 LNG 연소특성)

  • Ryu, Ho-Jung;Bae, Dal-Hee;Jin, Gyoung-Tae
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-147
    • /
    • 2005
  • LNG combustion characteristics of oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Three particles, NiO/bentonite, $NiO/NiAl_2O_4$, $CO_xO_y/CoAl_2O_4$, were used as oxygen carrier particles and LNG and air were used as reactants for reduction and oxidation, respectively. In the reducer, high gas conversion and high $CO_2$ selectivity were achieved for all three particles. In the oxidizer, NOx was not detected. The results of exhaust gas analysis showed that inherent $CO_2$ separation and NOx-free combustion are possible in the LNG fueled chemical-looping combustion system with NiO/bentonite, $NiO/NiAl_2O_4$ and $Ca_xO_y/CoAl_2O_4$ particles.

  • PDF

Selection of Oxygen Carrier Candidates for Chemical Looping Combustion by Measurement of Oxygen Transfer Capacity and Attrition Loss (산소전달량 및 마모손실 측정에 의한 매체순환연소용 산소전달입자 후보 선정)

  • KIM, HANA;PARK, JAEHYEON;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.404-411
    • /
    • 2016
  • To select appropriate oxygen carrier candidates for chemical looping combustion, reduction characteristics of seven oxygen carriers were measured and discussed using three different reduction gases, such as $H_2$, CO, and $CH_4$. Moreover, attrition losses of those oxygen carriers also measured and compared. Among seven oxygen carrier particles, OCN703-1100 and NiO/bentonite particles showed higher oxygen transfer capacity than other particles, but these particles showed more attrition loss than other particles. C14 and C28 particles which used as cheap oxygen carriers in European country showed lower oxygen transfer capacity and less attrition loss. Based on the experimental results, we could select OCN717-R1SU, NC001, and N002 particles as candidates for future works because these oxygen carriers showed enough oxygen transfer capacity and good attrition resistance.

Method for Improvement of Reduction Reactivity at High Temperature in a Chemical-Looping Combustor (매체순환식 가스연소기에서 고온 환원반응성 증대 방법)

  • Ryu, Ho-Jung;Park, Sang-Soo;Lee, Dong-Ho;Choi, Won-Kil;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.843-849
    • /
    • 2012
  • When we use NiO based particle as an oxygen carrier in a chemical looping combustion system, the fuel conversion and the $CO_2$ selectivity decreased with increasing reaction temperature within high temperature range (> $900^{\circ}C$) due to the increment of exhaust CO concentration from reduction reactor. To improve reduction reactivity at high temperature, the applicable metal oxide component was selected by calculation of the equilibrium CO concentration of metal oxide components. After that, feasibility of reduction reactivity improvement at high temperature was checked by using solid mixture of the selected metal oxide particle and NiO based oxygen carrier. The reactivity was measured and investigated using batch type fluidized bed. The solid mixture of $Co_3O_4/CoAl_2O_4$(10%) and OCN706-1100(90%) showed higher fuel conversion, higher $CO_2$ selectivity and lower CO concentration than OCN706-1100(100%) cases. Consequently, we could conclude that improvement of reduction reactivity at high temperature range by adding some $Co_3O_4$ based oxygen carrier was feasible.

Syngas Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor (가압 유동층 반응기에서 산소공여입자의 합성가스 연소 특성)

  • Park, Sang-Soo;Lee, Dong-Ho;Choi, Won-Kil;Ryu, Ho-Jung;Rhee, Young-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.83-92
    • /
    • 2012
  • Syngas combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using simulated syngas and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction conditions and no NO emission at oxidation conditions. Moreover, OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration with temperature. However, fuel conversion and $CO_2$ selectivity increased and CO emission decreased as pressure and gas residence time increased.

Effects of Temperature, Pressure, and Gas Residence Time on Methane Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor (가압 유동층 반응기에서 산소공여입자의 메탄 연소 특성에 미치는 온도, 압력 및 기체체류시간의 영향)

  • Ryu, Ho-Jung;Park, Sang-Soo;Moon, Jong-Ho;Choi, Won-Kil;Rhee, Young-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.173-182
    • /
    • 2012
  • Effects of temperature, pressure, and gas residence time on methane combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using methane and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction condition and very low NO emission at oxidation condition. Moreover OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration. However, $CO_2$ selectivity increased as pressure increased and fuel conversion increased as gas residence time increased.

CH4 Combustion Characteristics of Oxygen Carriers in a Bubbling Fluidized Bed (기포유동층에서 산소전달입자들의 메탄 연소특성)

  • RYU, HO-JUNG;PARK, YOUNGCHEOL;LEE, SEUNG-YONG;JO, SUNG-HO;SHUN, DOWON;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.581-588
    • /
    • 2016
  • To compare reduction reactivity of oxygen carrier particles, $CH_4$ combustion characteristics were measured and investigated in a bubbling fluidized bed reactor with increasing $CH_4$ concentration from 10 to 100 %. Among five oxygen carriers (OC-1, OC-2, SDN70, C14, C28), OC-1, OC-2, SDN70 particles were selected as better oxygen carriers from the viewpoints of fuel conversion and $CO_2$ selectivity. However, some oxygen carriers showed lower fuel conversion and $CO_2$ selectivity even though they have high oxygen transfer capacity. Therefore, we could conclude that not only TGA tests to measure the oxygen transfer capacity but also fluidized bed tests to analyze exhaust gas concentration should be performed to select better oxygen carrier without misunderstanding of carriers reactivity.

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.