• Title/Summary/Keyword: 매입 길이

Search Result 57, Processing Time 0.027 seconds

A Study on the Anchorage Length of Metal Stiffeners for the Structural Reinforcement of Stone Cultural Heritages (석조문화재의 구조적 보강을 위한 금속보강재 정착길이 연구)

  • Kim, Sa-Dug;Lee, Dong-Sik;Kim, Hyun-Yong
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.141-151
    • /
    • 2012
  • It was the 1900s that the damaged materials of stone heritages began to be preserved and managed for the purpose of reuse, especially since cement, an inorganic material, began to be used during the Japanese colonial period. Epoxy resin, an organic material, was introduced to architecture around the turn of the 1990s, and has been being used across the board. In particular, filler mixtures began to be aggressively used for the structural reinforcement of severed materials. The problem was metal stiffeners used for structural reinforcement. The anchorage length varied depending in different conservation scientists, and as a result the secondary damage was apt to occur in the materials. In this study, hereat, a calculation was made of the most effective anchorage length with the minimization of material damage. The results were as in the following: the anchorage length of an 8-milimeter-across (ø8) metal stiffener was found to be most effective at 60.88mm. Those of ø12 and ø16 were 60.88mm and 91.32mm respectively. In the case of other calibers, the anchorage length was calculated by a formula ${\ell}_d=a_tf_y/u{\Sigma}_0$. In the experiment, helically-threaded round bars were used as metal stiffeners in order that they could bear surcharge loads such as bending, shear and constriction.

An analytical study on behavior of the girder pannel in simplified composite deck during construction (초간편 강합성 바닥판 거더패널의 가설중 거동에 관한 해석적 연구)

  • Han, Deuk-Choen;Choi, Seung-Ho;Yoon, Ki-Yong;Yi, Gyu-Se;Kim, Sang-Seup
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.108-111
    • /
    • 2007
  • 최근 현장타설 바닥판의 대안으로 강합성 바닥판을 이용하여 바닥판의 공용년수를 증진시키고 공기 단축 및 시공의 간편성, 교통흐름의 원활화등을 위한 연구가 활발히 이루어지고 있다. 본 논문에서는 기존 I형강 매입형 강합성 바닥판을 기본으로 한 새로운 형식의 초간편 강합성 바닥판을 제시하여 거동패널의 거동에 대해 연구하였다. 하부강판과 I형강의 용접량의 변화, I형강의 복부에 유공 유무, 유공의 위치변화에 대한 특성을 파악하였다 이때 H형강의 상부 플랜지는 강판과 용접된 것으로 가정하였으며, 가설시 합성전 단면에 대한 거동 분석이므로 하중은 강판, I형강, 콘크리트의 자중만 고려되었다. 연구결과, 하부강판과 I형강의 용접길이 변화시 전체용접에 비해 30%용접을 수행시 중앙부 단면에서 최대 휨 인장응력이 증가하는 결과를 보였으며, I형강 복부에 유공이 있을시 유공이 없는 경우 보다 처짐량이 약간 증가함을 확인하였다. 또한 I형강 복부의 유공 위치를 변화시킨 결과 거더패널 강바닥판의 거동에는 영향을 받지 않는 것으로 나타났다.

  • PDF

Structural Performance of RC Slab-Wall Joints Reinforced by Welded Deformed Steel Bar Mats (철근격자망을 사용한 슬래브-벽체 접합부의 구조성능)

  • Park, Seong-Sik;Yoon, Young-Ho;Lee, Bum-Sik
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 2011
  • In order to clarify the structural performances of Welded Deformed Steel Bar Mats (WDSBM), the research stated includes the tests for standard hook of top bars of slab in concrete slab-wall joints, the tests for embedment length of top bar of slab, and the development strength tests for standard hook. The test results are as follows; (1) For slab-wall joints using WDSBM as reinforcement in slab, if the top bars of WDSBM are spliced by ordinary bars with sufficient development length and size, it is enough for the strength and crack control. (2) When WDSBM of slab is spliced in joint, the strength is increased with the embedment of bars of this WDSBM into wall. Beyond peak strength, however, ductility is diminished to that as no splice due to pull-out failure. (3) For slab-wall system, ultimate strain of concrete for flexural compression zone in lower surface of slab seems much greater than that of normal concrete beam. The reason is that normal concrete beam has the joint with $180^{\circ}$, however slab-wall joint has the $90^{\circ}$ of which concrete can be confined.

Behavior Analysis of Fill Slope by Vehicle Collision on Guardrail (가드레일에 차량 충돌 시 성토사면의 거동분석)

  • Park, Hyunseob;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2014
  • Recently, the number of road construction is increasing by industrial development. According to this industrial tendency, the number of traffic accidents are consistently increasing due to increasing number of vehicle on the road. This is mainly because traffic accidents are occurred by various parameter such as negligence of driver, vehicle defects, state of unstable road, natural environment etc. Lane department of vehicles from guardrail is occurring frequently. This type of accident is caused by vehicle performance improvement and shape of vehicle, weak guardrail installation and maintenance. Guardrail has the purpose on prevention such as prevention of traffic accident and prevention of deviating out of road, minimizing damage of driver and vehicle by collision as well as entry into the road through guardrail. Stability evaluation test of guardrail verifies the behavior of guardrail through the crash of truck. At this time, the crash condition has 100 km/h of velocity and $15^{\circ}$ of impact angle. In the case of ground condition, filling slope condition has relatively high bearing capacity of infinite ground towards the test. Guardrail is generally installed on road of shoulder in fill slope in korea. It is possible for stability problem to deteriorate ground bearing capacity in Guardrail in fill slope. The existed study towards stability of guardrail has been carried out in the infinite ground. However, the study on the behavior of fill slope with guardrail is not performed by vehicle collision. Therefore, In this study, the numerical analysis using LS-DYNA was executed for verification on behavior of fill slope with guardrail through vehicle collision. This numerical analysis was carried out with change of embedded depth on installed guardrail post in shoulder of fill slope by vehicle collision and 8 tonf truck crash providing at NCAN (National Crash Analysis Center). As the result, displacement and stress on fill slope are decreased in accordance with the increase of embedded depth of guardrail post. Ground bearing capacity is deteriorated at depth of 450 mm form shoulder of road on fill slope.

Evaluation of Crack Width Based on the Actual Bond Stress-Slip Relationship in Structural Concrete Members (부착응력-미끌림 관계에 기반한 철근콘크리트 부재의 균열폭 산정)

  • Kim, Woo;Lee, Ki-Yeol;Kim, Jang-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.91-100
    • /
    • 2006
  • This paper presents an analytical model for evaluation of crack widths in structural concrete members. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 are employed in this study together with the assumption of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test specimens available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.

Modeling of Tension Stiffening Effect Based on Nonlinear Bond Characteristics in Structural Concrete Members (비선형 부착 특성에 기반한 철근콘크리트 부재의 인장증강효과 모델)

  • Lee, Gi-Yeol;Ha, Tae-Gwan;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.745-754
    • /
    • 2007
  • This paper presents a unified modeling technique for tension stiffening effect in structural concrete members. The model is mathematically derived from the bond stress-slip relationships which account for splitting crack. The relationships in CEB-FIP Model Code 1990 and Eurocode 2 are employed together with the assumptions of a linear slip distribution along the interface and the uniform condition of concrete tensile contribution for the mid section of cracked member at the stabilized cracking stage. With these assumptions, a model of tension stiffening effect is proposed by accounting for the force equilibrium and strain compatibility condition associated to the steel strain and concrete contribution by bond stress. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured behavior.

Crack Width Calculation Based on Bond Characteristics and Cracking Behavior of Reinforced Concrete Structures (부착특성과 균열거동을 고려한 철근콘크리트 구조물의 균열폭 계산)

  • Yang, Jun-Ho;Kim, Woo;Lee, Gi-Yeol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.944-952
    • /
    • 2009
  • This paper presents an analytical model for calculation of crack widths in reinforced concrete structures. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 and Eurocode 2 are employed in this study together with the numerical analysis result of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.

Bond Behavior of Thin-Walled Rectangular Profiled Steel Sheet Concrete Short Columns (절곡된 단면을 갖는 얇은 판요소 콘크리트 충전 각형강관 기둥의 부착거동)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.233-241
    • /
    • 2005
  • The paper is presented experimental study results on bond stress between profiled steel and concrete in Profiled SPC(Profiled Steel Plate Concrete) rectangular steel tubes through an experimental program in which 13 pull-out specimens were tested. Advantages and class of composite members and current problems of construction work are noted, past research of PSSC is described. An experimental study is described and evaluated. The bond capacity is interrelated with slip at the steel concrete interface. The factors influencing the mechanism of bond stress transfer were the cross section shape, length/diameter, diameter/thickness and environmental parameters (temperature, moisture). The results of experimental program indicated that the force transfer could be characterized into two regions The first region was governed by bond with no relative slip between the profiled steel and concrete. The second region occurs after the chemical debonding. Bond stress transfer in this region was governed by frictional resistance between profiled steel and concrete and cross section shapes. The important factors influencing the magnitude of frictional resistance are the profiled steel shapes, length/diameter and environmental parameters. (temperature, moisture)

Analysis of Crack Width and Deflection Based on Nonlinear Bond Characteristics in Reinforced Concrete Flexural Members (비선형 부착 특성에 기반한 철근콘크리트 휨부재의 균열폭과 처짐 해석)

  • Lee, Gi-Yeol;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.459-467
    • /
    • 2008
  • This paper describes a proposal for average crack width and immediate deflection calculation in structural concrete members. The model is mathematically derived from actual bond stressslip relationships and tension stiffening effect between reinforcement and the surrounding concrete, and the actual strains of steel and concrete are integrated respectively along the embedded length between the adjacent cracks so as to obtain the difference in the axial elongation. With these, a model for average crack width and immediate deflection in reinforced concrete flexural members are proposed utilizing difference in the axial elongation and average steel strain and moment-curvature relationship with taking account of bond characteristics. The model is applied to the test specimens available in literatures, and the crack width and deflections predicted by the proposal equation in this study are closed to the experimentally measured data compared the current code provisions.

Analysis of Load Sharing Ratio of Piled Raft Foundation by Field Measurement (현장 계측을 통한 말뚝지지 전면기초의 하중분담률 분석)

  • Jeong, Sang-Seom;Lee, Jun-Hwan;Park, Jong-Jeon;Roh, Yang-Hoon;Hong, Moon-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.41-52
    • /
    • 2017
  • In this study, field measurements were investigated to analyze the load sharing ratio and behavior of piled raft foundation. The field measurements were performed for about 300 days from the start of construction. The geometry of the raft is $3.1m{\times}3.1m$, and the pre-cast and pre-bored pile is 23 m in length and 0.508 m in diameter. Based on the field measurements, the load-settlement relationship of the piled raft foundation was obtained, and the load sharing ratio of the pile was converged to 70% at ultimate loading condition. The load sharing ratio of the pile increased as the settlement increased, and this is because the surface friction of the weathered soil, which is at the lower ground, was significantly increased. Based on the results of the field measurements, load transfer curves were obtained and applied to a numerical analysis by using load transfer method.