• Title/Summary/Keyword: 매연 배출

Search Result 147, Processing Time 0.011 seconds

Exhaust Emission Characteristics from Heavy-duty Diesel Engine applicable to Prime Propulsion Engine for Marine Vessels (선박 주 추진기관으로 사용가능한 대형 디젤엔진의 배기가스 특성 분석)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.484-489
    • /
    • 2012
  • The objective of this work presented here was focused on analysis of particulate matter and nitrogen oxide characteristics in ESC test mode from heavy-duty diesel engine installed on-road vehicles applicable to prime propulsion engine for marine vessels. The authors confirmed that a large quantity particulate matter were emitted in high power density condition, nitrogen oxide characteristics were dependent on exhaust gas temperature. Particulate matters were reduced by 1/100~1/1,000 times in post DPF with test modes but filtration efficiency was decreased in the engine power fluctuation. In the case of the high speed and power condition, the exhaust level of particulate matters was increased according to increment of temperature of gas flowing into DPF. The orders of magnitude for particle concentration levels from the analysis of size distribution of particulate matters of test engine was different. Both emitting nano-sized particles below 100nm regardless of DPF and non-DPF.

Reduction Characteristics of Diesel Nano-Particle by Diesel Particulate Filter (매연여과장치에 의한 경유미세입자 저감 특성)

  • 임철수;엄명도;류정호;김예은
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.327-328
    • /
    • 2003
  • 경유자동차는 연료 특성상 매연을 포함한 입자상물질을 다량 배출하고 있으며, 이러한 디젤입자상물질은 인체에 유해한 발암성 및 돌연변이원성 물질들을 함유하고 있기 때문에 호흡 등을 통한 인체 유입시 건강에 매우 유해하다. 그러므로 디젤입자상물질을 저감시키기 위한 여러 가지 기술들 중 발생된 배출가스가 배기관을 통해 대기중으로 배출되기 전에 엔진 연소실과 배기관 사이에 후처리장치와 같은 기술들을 이용하여 이를 저감시키고 있다. 본 연구에서는 후처리장치들 중 세라믹필터에 백금과 같은 산화성이 우수한 촉매를 코팅하여 만든 촉매식 매연여과장치(DPF ; diesel particulate filter, SK제공)를 사용하였을 때 입자저감성능 및 입자크기별 분포특성을 살펴보고자 하였다. 이를 통해 도시대기오염 저감대책을 기초자료 및 환경학적, 보건학적 연구에 적극 활용하고자 한다. (중략)

  • PDF

Analysis on Vehicle Fires Caused by Damage of Diesel Particulate Filter (DPF) (매연저감장치 손상에 기인한 차량화재 사고사례 분석)

  • Song, Jae-Yong;Sa, Seung-Hun;Nam, Jung-Woo;Cho, Young-Jin;Kim, Jin-Pyo;Park, Nam-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.70-76
    • /
    • 2012
  • This paper deal with vehicle fire caused by damage of diesel particulate filter (DPF) on diesel passenger vehicles. In order to reduce particulate matters included exhaust gases, a DPF in the exhaust system were installed diesel vehicles. A DPF was broken by excessively trapped particulate matters, regeneration error with a malfunction of ECU and defect of suction system such as swirl valve. If the DPF was broken, hot exhaust gases was released to the bottom of vehicle and released hot exhaust gases lead to occur the fire through combustible materials around the exhaust system. When a fire happened in the diesel vehicle caused by damage of DPF, silicate inorganic compounds were attached to the exhaust ventilation pipe and muffler. The silicate inorganic compounds were created by DPF combustion consisting of raw material ceramics. If the silicate inorganic compounds attached to the tail pipe in the diesel passenger vehicles, its fire cause will be assumed damage of DPF.

The effects of introduction of diesel passenger cars on the ventilation requirements for road tunnels (경유승용차 도입이 터널 소요환기량에 미치는 영향분석)

  • Kim, Hyo-Gyu;Song, Seok-Hun;Kim, Nam-Young;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.309-321
    • /
    • 2007
  • Since the first diesel passenger car hit the local road in late 2005, the share of diesel cars is growing significantly; possibly up to the level as in the western Europe. In this study, the effects of introduction of diesel passenger cars on the ventilation rate and facility capacity are analyzed for the three individual cases with different basic exhaust rate based on the vehicle age, the vehicle class percentage and the smoke exhaust rate. The target tunnel for this comparative study is a typical 2 km-long 2-lane highway tunnel. Case 1 assuming the current local design standards and the diesel vehicles comprising 40% of the total passenger cars on the road required more ventilation rate and facility capacity than in the case only with the current standards. Case 2 which is the real tunnel currently in the designing stage taking into account the vehicle age but ignoring the diesel vehicle ratio, and Case 3 on the contrary considering the both factors show similar level of ventilation characteristics as EURO-3 emission regulation. Application of the emission standard set by the Ministry of Environment for newly manufactured vehicles in the current local tunnel design standard indicates higher requirements than for EURO-2 regulation, whereas the emission standard came into effect in 2006 results in the ventilation characteristics similar to EURO-4. This study aims at providing fundamental information for assessing the basic emission rate and determining the optimal ventilation rate and facility capacity considering the growing percentage of diesel cars and gradually decreasing level of smoke emission forced by the relevant laws.

  • PDF

Study on effect of fuel property change on vehicle important parts and exhaust gas (연료 물성 변화가 자동차 주요부품 및 배출가스에 미치는 영향 연구)

  • Lee, Jung-Cheon;Kim, Sung-Woo;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.866-873
    • /
    • 2017
  • Exhaust regulations of automobile are being reinforced increasingly as environmental problems issues came to the fore by industrial development. However, it is known that the exhaust emission is not only influenced by the system of automobile but also the fuel properties. In particular, high-performance engines have required high-performance fuels with high lubricity as CRDI engines(diesel engine) have been developed and commercialized. This paper have examined that the fuel property variations affect a major parts and an exhaust gas of automobile. It was confirmed that the high pressure pump, the injector and the DPF(diesel particulate filter) were damaged and fuel efficiency was get worse due to use the fuel of lacking lubricity property($651{\mu}m$/quality standard: less in $400{\mu}m$). In addition, through an iron component was detected in the broken DPF, it was estimated that the breakage of the DPF was caused by the excessive exhaust of the particulate matter due to the iron component of the fuel.

A Study on Evaluating a Representative Smoke Value from an Inspection Vehicle Using Integration Method over a Cycle of Free-Acceleration Test Mode (무부하 급가속 측정 사이클로 운전되는 검사 대상 디젤 차량으로부터 배출되는 매연값 적분에 의한 차량 매연 대표값 특성 연구)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.132-139
    • /
    • 2013
  • Smoke emissions from light duty diesel vehicles were measured using light extinction method with the free acceleration test mode. The smoke emissions for each measurement cycle of the free acceleration method showed large variations according to driver's pedal pushing pattern. The smoke values for each measurement cycle initially increased and reach a peak value. Integration of the smoke emissions with time for each measurement cycle was performed to get a representative smoke value which was obtained by averaging the integrated results. Two kinds of integration time range were used. One is range over the whole measurement cycle of the free acceleration method. The other is only the acceleration range in the measurement cycle. Overall, variation of the representative smoke values obtained by the integration method was reduced comparing to the traditional representative smoke value which was obtained from a peak smoke value over the measurement cycle. Ten vehicles of the same model with 2.5 liter diesel engines, and seven vehicles of the same model with 2.7 liter diesel engines, were tested using the free acceleration test method.

An Experimental Study of Smoke Reduction System using Vacuum (부압을 이용한 매연저감장치의 실험적 연구)

  • Ham, Sung-Hoon;Kwon, Young-Woong;Oh, Se-Hoon;Park, Sung-Cheon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.714-718
    • /
    • 2009
  • Over the past years, many research works have been carried out to investigate the factors which govern the performance of diesel engine. The air pollutant emission from the diesel engine is still a significant environmental concern in many countries. In the present study, new system of smoke reduction of diesel engine is proposed. This new system is using vacuum equipment and filter included moisture for capture smoke. To verificate new system experiments were performed at diesel vehicle. As a result it is founded that smoke is decreased.

Study on the Characteristics of Exhaust Emissions in accordance with the Intake Manifold and Fuel Injector Maintenance of the Electronic Control Diesel Engine (전자제어 디젤엔진의 흡기 다기관 및 연료분사장치 정비에 따른 매연 배출특성에 관한 연구)

  • Kang, Hyun-Jun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.196-205
    • /
    • 2016
  • The exhaust gas discharged by cars not only threatens the health of the human body, but also contributes to global warming, due to the resulting increase in the concentrations of ozone, fine dust and carbon dioxide. Therefore, the government has steadily implemented careful inspection systems for exhaust emissions, in order to efficiently regulate the exhaust gas of cars. Studies on reducing the exhaust emissions of automobiles have been conducted in various fields, including ones designed to reduce the generation of HC, NOx, and $CO_2$ in the exhaust emission of vehicles. However, there have been insufficient studies on the reduction of the exhaust emission for old diesel vehicles. To develop careful inspection systems for the exhaust emissions of old diesel vehicles, studies on the reduction of the exhaust emissions and improvement of power are necessary by cleaning the carbon sediment in both the intake manifold and injector. Therefore, in this study, we analyzed and compared the amounts of gas emitted when simultaneously cleaning or not cleaning the intake manifold and injector of diesel automobiles with mileages over 80,000 km and operating periods over 5 years. The experimental results showed that in the case where the intake manifold and injector were simultaneously cleaned, there was a decline of 75.2% in the gas emission compared to the cases where only the manifold or injector is cleaned. Also, it was found that simultaneously cleansing the intake manifold and injector enabled the exhaust standard to be satisfied for less than 30% within 8.5 sec.

Effects of CO Addition on Soot Formation in the Well Stirred Reactor (WSR에서 매연 생성에 관한 CO 첨가 효과)

  • Jeong, Tae-Hee;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.35-40
    • /
    • 2012
  • Numerical investigation was performed to study on the soot formation characteristics in the WSR according to the CO addition. Ethylene and pure air were used as a fuel and an oxidizer, respectively, and three different equivalence ratios (2.0, 2.5, 3.0) were used in the calculation. The resulted CO mole fraction of 10 % CO addition showed the maximum value in spite of the least CO supply. This means that the conversion of CO to soot and other carbon compounds is weakened under incipient soot formation. The soot volume fraction was decreased with increasing the CO addition because the important species for soot formation such as pyrene and acetylene, were decreased with the addition of CO. When the equivalence ratio was 2.5, the soot volume fraction shows the highest value, which results from the contribution of fuel rich condition and reacting temperature. Furthermore, surface growth rate and species concentrations justified the HACA mechanism for soot formation.