• Title/Summary/Keyword: 매연 배출물

Search Result 65, Processing Time 0.029 seconds

An Experimental Study of Smoke Reduction System using Vacuum (부압을 이용한 매연저감장치의 실험적 연구)

  • Ham, Sung-Hoon;Kwon, Young-Woong;Oh, Se-Hoon;Park, Sung-Cheon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.714-718
    • /
    • 2009
  • Over the past years, many research works have been carried out to investigate the factors which govern the performance of diesel engine. The air pollutant emission from the diesel engine is still a significant environmental concern in many countries. In the present study, new system of smoke reduction of diesel engine is proposed. This new system is using vacuum equipment and filter included moisture for capture smoke. To verificate new system experiments were performed at diesel vehicle. As a result it is founded that smoke is decreased.

A Study on the Effects of Recirculated Exhaust Gas on Soot Emissions in Diesel Engines (디젤기관 매연 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, M.W.;Lim, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.142-154
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristic of soot emissions have been investigated by using an eight-cylinder, four-stroke, direct injection and water-cooled diesel engine operating at several loads and speeds. The experiments in this study are carried out at the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate are used to analyze and discuss the influences of EGR rate on soot emissions. Results of this study indicate that soot emissions increase owing to the drop of intake oxygen concentration and the rise of equivalence ratio as the EGR rate increases at a given engine load and speed, especially the high load.

  • PDF

A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System (FGR 시스템 동력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, Myung-whan;Jung, Kwong-ho;Park, Sung-bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.263-273
    • /
    • 2016
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_x$ emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and $NO_x$ emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

A Study on Combustion And Exhaust Emissions of Diesel Engine -For Gas Oil-Water Emulsified Fuel- (디젤 기관의 연소와 배출물에 관한 연구 -경유-물물의 유화연료 사용시-)

  • 조진호;김형섭;박정률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.180-188
    • /
    • 1992
  • By means of the compatibility according to solving environmental pollution and energy problem due to the emissions of NOx and smoke from diesel engine this paper experimentally inspected the effect of using emulsified fuel, gas oil-water, for combustion characteristic, that is combustion pressure, pressure rise rate, heat generating rate, the period of ignition delay and specific fuel consumption, and CO, HC, NOx concentration and smoke density. When using emulsified fuel, as a water addition rate was increased, combustion pressure, pressure rise rate and heat generating rate was increased, the period of ignition delay was lengthening, the specific fuel consumption was some what increased in contrast to diesel fuel in low load, but deceased in high load region. And NOx concentration was decreased, CO concentration was increased in low load, but decreased in high load region, HC concentration was increased in contrast to diesel fuel in all region.

Performance and Emissions Characteristics of a Diesel Engine with Some Bio-oil Fuels (몇가지 바이오 연료를 이용한 디젤기관의 성능 및 배기 배출물 특성)

  • 나우정;조기현
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.471-480
    • /
    • 2000
  • 대체연료로서 바이오 연료의 디젤엔진에의 적합성을 파악하기 위하여 경유, 가온 미강유, 초음파 적용 가온 미강유, 미강유 메틸 에스테르, 폐식용유, 초음파 적용 폐식용유, 폐식용유 메틸 에스테를 14kW 예연소실식 디젤 엔진의 연료로 사용하여 그 성능과 배기배출물을 측정하였다. 시험에 사용한 바이오 연료들에 의해 엔진 분사 펌프의 조정이나 다른 부품의 개조를 하지 않고도 단기간 전부하 상태로 1,600~2,800 rpm 의 범위에서 엔진은 정상적으로작동하였다. 바이오 연료를 사용하였을 경우 전반적으로 엔진성능과 배기 배출물 특성에 있어서 경유를 사용하였을 경우와 비견할만 하였으며 특히 매우 낮은 농도의 $SO_2$와 매연을 배출하였다.

  • PDF

Analysis on Vehicle Fires Caused by Damage of Diesel Particulate Filter (DPF) (매연저감장치 손상에 기인한 차량화재 사고사례 분석)

  • Song, Jae-Yong;Sa, Seung-Hun;Nam, Jung-Woo;Cho, Young-Jin;Kim, Jin-Pyo;Park, Nam-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.70-76
    • /
    • 2012
  • This paper deal with vehicle fire caused by damage of diesel particulate filter (DPF) on diesel passenger vehicles. In order to reduce particulate matters included exhaust gases, a DPF in the exhaust system were installed diesel vehicles. A DPF was broken by excessively trapped particulate matters, regeneration error with a malfunction of ECU and defect of suction system such as swirl valve. If the DPF was broken, hot exhaust gases was released to the bottom of vehicle and released hot exhaust gases lead to occur the fire through combustible materials around the exhaust system. When a fire happened in the diesel vehicle caused by damage of DPF, silicate inorganic compounds were attached to the exhaust ventilation pipe and muffler. The silicate inorganic compounds were created by DPF combustion consisting of raw material ceramics. If the silicate inorganic compounds attached to the tail pipe in the diesel passenger vehicles, its fire cause will be assumed damage of DPF.

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Diesel Engine (디젤기관의 연료분사시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.50-56
    • /
    • 2001
  • A study on the exhaust emissions of diesel engine with various fuel injection timing is peformed experimentally. In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 25% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx. HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) $NO_x$ emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

  • PDF

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DI Diesel Engine - Using Rape Oil - (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향 - 유채유를 중심으로 -)

  • Lim, Jae-Keun;Choi, Soon-Youl;Kim, Suk-Joon;Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • We have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel without change of engine structure in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine. Especially this biodisel was produced from rape oil at our laboratory by ourselves. This study showed that specific fuel consumption and NOx emission were slightly increased, on the other hand CO emission and Soot were tolerably decreased more in the case of biodiesel blends than neat diesel oil.

  • PDF

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Marine Diesel Engine (선박용 디젤기관의 연료분사 시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.307-312
    • /
    • 2002
  • A study on the exhaust emissions of marine diesel engine with various fuel injection timing is performed experimentally .In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 0% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx, HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) NOx emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.