• Title/Summary/Keyword: 매설조건

Search Result 143, Processing Time 0.035 seconds

Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants (원전 안전 3 등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 인장 피로특성 평가)

  • Kim, Jong Sung;Lee, Young Ju;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

Analysis of Gas Pipeline Movement and Stress Estimation (가스배관 위치이동 해석 및 응력 예측 기법 개발)

  • Kim, Joon Ho;Kim, Dong Hyawn;Lee, Sang Geun;Hong, Seong Kyeong;Jeong, Sek Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.203-210
    • /
    • 2009
  • If there are some construction works that affect the stability of buried pipelines, the pipelines should be moved to guarantee their safety. In this paper, modeling methods for analyzing the movement of pipelines were sought, and the step-by-step stress estimation method of moving pipelines was developed. Some factors affecting of pipeline response such as the element type, the element size, boundary modeling, and geometric non-linearity were quantitatively investigated. In addition, some conditions in which accuracy and effectiveness can be compromised in the analysis of long pipelines were identified. A neural network was used to estimate the pipeline stress. The inputs to the neural network included step-by-step displacements, and the output was the resulting stress at each movement step. After training the neural network, it can be used to estimate pipeline stresses at some sub-steps that are not included in the training. A Windows-based stress estimation program was developed.

Modification of Response Displacement Method for Seismic Design of Underground Structures under Domestic Conditions (국내 특성이 반영된 지하구조물의 내진설계를 위한 수정응답변위법)

  • 김명철;김영일;조우연;김문겸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.83-93
    • /
    • 2004
  • In this study. the Modified Response Displacement Method(MRDM) for seismic design of underground box-type structures is proposed. Firstly, to investigate the applicability of the conventional RDM, various parametric studies are performed according to buried depth and soil conditions. Results from the conventional RDM are compared with those of time history analysis in terms of the maximum bending moment and relative displacement. The comparison shows that the velocity response spectrum and the determination method of foundation modulus which significantly influence the accuracy of RDM should be modified. Thus, the modified velocity response spectrum and the new determination method of foundation modulus are proposed under consideration of domestic conditions. In order to demonstrate the accuracy and validity of the proposed MRDM numerical analyses are performed according to different parameters such as depth of base rock, height and width of box, buried depth and soil condition. the comparison with the results of the time history analysis verifies the feasibility of the proposed MRDM for the seismic analysis.

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.

Magnetic Field Analysis according to Line Configuration in Underground Transmission Systems (지중송전계통에서 선로구성에 따른 자계해석)

  • Lee, Jae-Myeong;Son, Yong-Dae;Go, Kwang-Man;Chea, Jik-Byoung;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.389-390
    • /
    • 2015
  • 최근 송전선로 주변의 자계에 대한 관심이 집중되고 있는 가운데 가공송전선로에 대한 검토는 많이 이루어졌으나 지중송전선로에 대한 검토는 가공에 비해 부족한 가운데 있다. 이에 따라 본 논문에서는 지중송전계통에 포설된 지중송전케이블에서 발생하는 자계를 구성조건 즉, 케이블 배열, 매설 깊이, 도체 간격 등 다양한 조건에서의 검토를 통하여 자계의 저감 방안을 제시하였다.

  • PDF

A Study on the Selection of Target Ship for the Protection of Submarine Power Cable (해저 동력케이블 보호를 위한 대상 선박 선정에 관한 연구)

  • Lee, Yun-sok;Kim, Seungyeon;Yu, Yungung;Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.662-669
    • /
    • 2018
  • Recently, the installation of submarine power cables is under consideration due to the increase of electric power usage and the development of the offshore wind farm in island areas, including Jeju. In order to protect power cables installed on the seabed, it is necessary to calculate the burial depth based on the characteristics of anchoring, dragging and fishing, etc. However, there is no design standard related to the size of target ships to protect the cables in Korea. In this study, we analyzed the design standards for the protection of domestic submarine pipelines similar to submarine cables, and developed the risk matrix based on the classification by emergency anchoring considering the installation environment, then designed the size of target ships according to the cumulative function scale by ship size sailing through the sea concerned. Also, we linked marine accident conditions, such as anchoring, dragging, etc. and the environmental conditions such as current, sea-area depth of installation etc. to the criteria of the protection of submarine cable, and examined the size of specific target ships by dividing the operating environment of ships into harbor, coastal and short sea. To confirm the adequacy and availability of the size of target ships, we verified this result by applying to No. 3 submarine power cables, which is to be installed in the section from Wando to Jeju Island. This result is expected to influence in the development of a protection system for submarine cables and pipelines as well as the selection of anchor weight according to the determination of burial depth.

Behavior Characteristics of Underground Flexible Pipe Backfilled with Lightweight Foamed Soil (경량기포혼합토로 뒷채움된 연성매설관의 거동특성)

  • Lee, Yong-Jae;Yea, Geu-Guwen;Park, Sang-Won;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • Lightweight Foamed Soil (LWFS) is a useful material for underground pipe backfill because of reusability of excavated soil and no compaction effect. In this research, a pilot test is carried out and monitoring results are analyzed to investigate behaviors of a flexible pipe, when LWFS is applied as a backfill material. Simultaneously, they are compared with another test case which is backfilled with Saemangeum dredged soil. As a result, the vertical earth pressure of the case backfilled with LWFS slurry presents that decreases as much as 25.6% in comparison with dredged soil and it is only within 10% after solidification. In case backfilled with dredged soil, the horizontal earth pressure is more than 3.6 times of the case used by LWFS and the vertical and horizontal deformation is more than 3.2 and 2.6 times of the case, respectively. It presents excellent effects on earth pressure and deformation reduction of LWFS. The stresses measured at the upper side of the pipe generally present compressive aspects in case backfilled with dredged soil. However, they present tensile aspects in case of LWFS. It is because of negative moment occurred at the center of the pipe due to the buoyancy from LWFS slurry. Conclusively, LWFS using Saemangeum dredged soil is very excellent material to use near the area in comparison with the dredged soil. However, the countermeasure to prevent the buoyancy is required.

Deformation Characteristics of Underground Pipe with In-situ Soil CLSM (현장발생토 CLSM을 이용한 지하매설관의 변형특성)

  • 박재헌;이관호;조재윤;김석남
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.129-139
    • /
    • 2004
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the small-scaled model test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM.. From the model test in the lab, it was found out that the use of CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the gound surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was smaller than those in the other cases, and the absolute value was almost zero. Judging from the small-scaled model test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing failure of the underground pipes.

Optimal Design of Drainage Pipe Considering a Distance of Storm Water Grate Inlet in Road (도로의 빗물받이 간격을 고려한 우수관거 최적설계)

  • Chang, Dong-Eil;Lee, Jung-Ho;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.53-58
    • /
    • 2008
  • This study presented a design model optimizing a distance of inlet with drainage pipe laid under the gutter in road. When the distance of inlet changed, a basin for the gutter divided by the distance of inlet and the inflow coming into the gutter would be changed. In this case, the change of inlet distance causes the change of a diameter of drainage pipe and slope because of the change of capacity. Therefore, the optimization is needed to design the combination of them for the distance of inlet. Genetic Algorithm is used to determine the optimal combination of them. The conditions of road and the precipitation were assumed like a real and the range of inlet distance adopted $10{\sim}30\;m$ which has been introduced in domestic. This model presented the optimal distance of inlet and the combination of pipe and slope through the minimum cost. The result of the study is that the optimal distance of inlet is different from each slope of road and it can reduce about 20% of total cost for the distance of inlet.

Reproducibility of Reaeration in Sewer using Batch Reactor Test (실험반응조를 이용한 하수관에서의 재포기현상 재현 가능성에 관한 연구)

  • Hwang, Hwankook;Min, Sangyun;Cho, Jinkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.45-50
    • /
    • 2014
  • The microorganism decomposition experiment of sewage in the underground sewer has the limit of experiment condition and time. The way to reproduce the microorganism decomposition in the underground sewer was studied using batch reactor setting up the DO as a limiting condition. The DO concentration in the sewer is controlled by reaeration. It is possible to obtain correlation between flow condition and reaeration coefficient through the reproduction of reaeration phenomenon by controlling the flow condition in the sewer using this phenomenon. And it is possible to set the flow condition and agitation intensity (velocity gradient) that has the same reaeration coefficient using the correlation between the reaeration coefficient with the flow condition and reaeration coefficient with the agitation intensity. The circumstances in the sewer system was reproduced using batch reactor setting up the DO as a limiting condition from these results.