• Title/Summary/Keyword: 매설깊이

Search Result 150, Processing Time 0.045 seconds

Experimental and Field Investigations for the Accuracy of the Frost Depth Indicator with Methylene Blue Solution (실내실험과 현장실험을 통한 Methylene Blue 동결깊이 측정장치 신뢰성 검토에 관한 연구)

  • Kim, Hak Seung;Lee, Jangguen;Kim, Young Seok;Kang, Jae-Mo;Hong, Seung-Seo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.75-79
    • /
    • 2013
  • The frost depth is one of important factors in the design of structures such as roadways, buried pipeline, and foundations. A frost indicator with methylene blue solution has several advantages with respect to installation cost, maintenance, and simple measurement. However, as a geotechnical engineering aspect, the accuracy of the frost indicator has not been proved yet. This paper presents experimental and field investigations of the accuracy of the frost indicator and contour maps of maximum frost depth. The contour maps of maximum frost depth can be applied to design geo-infrastructure in South Korea.

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

Development of Underground Facilities Management System on Subway Construction (지하철공사를 위한 지하매설물관리시스템 개발)

  • 강인준;장용구;정영미
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 1997
  • In other to construct a subway, we have to consider the position of the subway and acquisition of a topography, profile-map, cross-map, underground facilities map. All information of underground is demanded accurate location in other to prevent of accident of underground in subway construction. We must think about water lines, sewer lines, electronic lines, telephone lines, all urban gas-line because these are needed construction the subway. And attributes of underground facilities recorded on topography are characteristics. length, width. number, position, and depth of the lines. We have to record these attributes because these are very important to design map on subway construction. If we develop GIS (Geographic Information System) to use the exact in-formation of the underground facilities, we can be management safely and prevent very dangerous accident as fast as possible. In this study, attribute informations are linked geographic informations about underground facilities and we can develop Underground Facilities Management System(UFMS) to analysis dangerous region through dangerous degreed and predict accident range with these informations.

  • PDF

Contact Pressure around the Buried Rigid pipe under Embankment (성토하에 매설된 강성관의 접촉응륜력)

  • 안중선;강병희
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.7-16
    • /
    • 1985
  • The behaviour of buried rigid pipe under embankment is analysed by a linear finite element program to study the influence of variation of the geometry of soil-conduit pipe system and elastic modulus of soil on the pipe response. The geometry of the system considered includes the thickness of pipe, the height of embankment, and the width arid the depth of trench. The normal contact pressure distribution around the pipe and the vertical load on the pipe are modelled by a multiple linear regression. And the vertical load on the pipe computed by Marston-Spangles Theory Is generally larger than that by finite element analysis. The settiement ratio in Marston-Spangler Theory is found to be variable for various for various of all factors mentioned above.

  • PDF

FEM Analysis of Controlled Low Strength Materials for Underground Facility with Bottom Ash (바톰애쉬를 이용한 지하매설관용 유동성뒤채움재의 FEM 해석)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2368-2373
    • /
    • 2012
  • In this research, finite element method was carried out to evaluate the defomation of pipe and surface displacement for backfill of underground ficility. Various conditions for analysis were employer, including two different pipes(PE and concrete pipe), two different excavation depth(60cm and 150cm) and width(1.5D and 2D), a regular sand backfill, and four different flowable backfills. The vertical deformation of 60 cm diameter for PE was measured three times more than that of 30 cm diameter. The measured deformations for regular backfill and four flowable backfills were 0.320mm, and 0.135mm to 0.155mm, respectively. It ratio was around 40%. In case of 30cm diameter of concrete pipe, the measured vertical defomation was around 0.004mm for all the backfill materials. In case of installation depth, the effect of flowable backfill for flexible pipe is better than for rigid pipe. There is little effect on the deformation of concrete pipe with regular sand backfill and flowable backfill.

Continuous Variable Regression Analysis for Frequency of Damage Analysis in Heat Pipe (연속형 변수 회귀분석을 통한 열수송관 파손빈도 분석)

  • Myeongsik Kong;Jaemo Kang;Sungyeol Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.47-52
    • /
    • 2023
  • In order to efficiently maintain heat pipes operated by district heating operators, the facility history and damage history data built by the operator are used to identify key independent variables that are related to the occurrence of damage. Afterwards, the correlation with the frequency of damage was analyzed, and a basic model for estimating the frequency of damage was derived. Considering the correlation with the estimation model based on the use time currently being used by domestic and foreign district heating operators, a simple regression analysis basic model was presented as the independent variable with the highest correlation between continuous variables such as the use time, pipe diameter, burial depth, and insulation level of monitoring system, and the frequency of damage. The remaining independent variables were reflected as factors that modify and supplement the basic model. As a result of the analysis, as in previous research cases, it was confirmed that the analysis model between use time and frequency of damage had the highest correlation between the two variables and could be used as a basic model. Pipe diameter, burial depth, and insulation level of monitoring system information have also been confirmed to have a correlation with the frequency of damage, so they can be used as factors to supplement the basic model.

An Experimental Study on Detecting materials of GPR for Maintenance of Restored Cavities (복구된 공동의 유지관리를 위한 GPR 탐사용 탐지물질에 관한 실험적 연구)

  • Park, Jeong Jun;Shin, Eun Chul;Park, Kwang Seok;Shin, Hee Soo;Hong, Gigwon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.430-439
    • /
    • 2018
  • Purpose: The purpose of this study is to verify the effectiveness of maintenance method using GPR exploration by buried detective materials in the ground for efficient maintenance of recovered cavities. Method: EMI sheet, EMI paint, and ferronickel slag were used as the detection materials, and the experiment was conducted by varying the size and depth of the buried detectable material. Results: As a result of the exploration, Detectable influence range by GPR exploration was found depending on the size and depth of buried detectable material in all materials, and the possibility of using it as a detection material was confirmed.

A Study on the Quality of Grounding Method according to Grounding Constructio (접지공사에 따른 최적의 접지방법 연구)

  • Kim Sung-Hwan
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.207-208
    • /
    • 2022
  • 본 연구의 접지는 매설깊이나 봉의 개수에 따라 다소 차이가 있으며 시공비가 가장 저렴한 반면 신뢰도가 낮은 접지방식으로 장, 단점을 갖고 있었다. 대형 건축물에 대부분 적용하는 경우로 접지방식에서 대형화가 이루어짐으로 다소 신뢰가 있는 접지 시스템을 구축하고 있었다.

  • PDF

Test of Independence Between Variables to Estimate the Frequency of Damage in Heat Pipe (열수송관 파손빈도 추정을 위한 변수간 독립성 검정)

  • Myeongsik Kong;Jaemo Kang;Sungyeol Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.61-67
    • /
    • 2023
  • Heat pipes located underground in urban areas and operated under high temperature and pressure conditions can cause large-scale human and economic damage if damaged. In order to predict damage in advance, damage and construction information of heat pipe are analyzed to derive independent variables that have a correlation with frequency of damage, and a simple regression analysis modified model using each variable is applied to the field. However, as the correlation between independent variables applied to the model increases, the independence between variables is harmed and the reliability of the model decreases. In this study, the independence of the pipe diameter, burial depth, insulation level of monitoring system, and disconnection or short circuit of the detection line, which are judged to be interrelated, was tested to derive a method for combining variables and setting categories necessary to apply to the frequency of damage estimation model. For the test of independence, the continuous variables pipe diameter and burial depth were each converted into three categories, insulation level of monitoring system was converted into two categories, and the categorical variable disconnection or short circuit of the detection line status was kept as two categories. As a result of the test of independence, p-value between pipe diameter and burial depth, level of monitoring system and disconnection or short circuit of the detection line was lower than the significance level (α = 0.05), indicating a large correlation between them. Therefore, the pipe diameter and burial depth were combined into one variable, and the categories of the combined variable were set to 9 considering the previously set categories. The insulation level of monitoring system and the disconnection or short circuit of the detection line were also combined into one variable. Since the insulation level is unreliable when the detection line status is disconnection or short circuit, the categories of the combined variable were set to 3.