• Title/Summary/Keyword: 매립폐기물

Search Result 587, Processing Time 0.029 seconds

Analysis of Long-Term Settlement Parameter Correlation and Bearing Capacity Reinforcement Effect for Closed Waste Landfill (사용종료 매립장의 장기침하 모델 매개변수 상관성 및 지지력 보강효과 분석)

  • Cho, Young-Kweon;Chae, Young Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • Recently, the closed landfills are usually converted into parks or playground by the check the stability of landfill because they settle unevenly making them unsuitable for structures. When the closed landfill reuse, environmental and structural stability is important. To increase the bearing capacity and reduce the probable settlement of a foundation on waste disposal ground, a layer of geosynthetics(Geocell) is placed on the waste disposal ground. In this paper, the analysis of long-term settlement parameter correlation was performed, also the evaluation of bearing capacity reinforcement effect was conducted by field test. The settlement measured in the field, and input the same ground index when an integer to identify each model were compared by calculating the settlement. In addition, by adjusting the parameters of each model to identify the most similar to the value of field measurement parameters were calculated. Based on the analysis results, when the using the Park's model C(intermediate) = 0.0678, the expected settlement is similar to the field measurement results. Also, the bearing capacity of geocell reinforced ground is 1.193~1.554 times higher than that of unreinforced ground.

Evaluation on Feasibility of Industrial By-products for Development of Mono-Layer Landfill Cover System (산업부산물을 이용한 단층형 매립지 복토시스템 개발을 위한 적용 타당성 평가)

  • Kim, Soon-Oh;Kim, Pil-Joo;Yu, Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1075-1086
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to apply mono-layer cover system for non-sanitary landfill sites, 6 different industrial by-products, such as construction waste, bottom ash, gypsum, blast furnace and steel manufacture slags, and stone powder sludge, were evaluated. Various physicochemical and hydrodynamic properties of the industrial byproducts were investigated. The environmental safety was monitored using batch and long-term leaching tests as well. In addition, the flexibility of plants was observed by cultivating them in the industrial by-products. The results for physicochemical properties indicate that most of the materials considered appeared to be suitable for landfill cover. Particularly, the concentration levels of hazardous elements regulated by the Korean Law for Waste Management did not exceed the regulatory limits in all target materials. In addition, the concentrations of regulated elements for the Korean Soil Conservation Law were examined below the regulatory limits in most of materials considered, except for the stone powder sludge. The results of batch and long-term experiments showed bottom ash and construction waste were the most suitable materials for landfill cover among the industrial by-products considered. The results of plant studies indicate that the bottom ash among industrial by-products considered was most effective in developing vegetation on landfill site, showing fast germination and large growth index. At the final covering system made of mixture of soil and bottom ash, the optimum application rate of farmyard manure was observed to be 40-50 Mg/ha.

Study on Hydrate Kinetic of $CH_4+CO_2$ and $CH_4+CO_2+N_2$ System ($CH_4+CO_2$ System과 $CH_4+CO_2+N_2$ System의 Hydrate Kinetic 비교 연구)

  • Shin, Hyungjoon;Moon, Donghyun;Han, Kyuwon;Lee, Jaejung;Lee, Juho;Yoon, Jiho;Lee, Gangwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.219.1-219.1
    • /
    • 2010
  • 매립지에서 유기물의 분해로 발생되는 매립가스는 악취 등으로 인한 대기오염뿐만 아니라 온난화지수가 21인 메탄이 약 50vol% 포함되어 있어 지구온난화에 큰 영향을 미친다. 하지만 매립가스를 에너지원으로 활용하면 대기오염저감, 지구온난화 감소, 대체에너지원 확보뿐만 아니라 CDM사업 등과 연계하여 부가수익창출이 가능하다. 현재 국내에는 약 242개의 폐기물매립지가 있는데, 이중 매립가스를 활용하는 곳은 단지 14개소로 개별 경제성이 있는 대형매립지에서만 자원화시설을 설치하여 운영 중이며 그 외 매립지에서는 매립가스를 소각 또는 단순 대기 방출하여 대기오염유발과 동시에 대체에너지원 미활용으로 국가차원에서 큰 손실이므로 이를 활용할 수 있는 기술개발이 시급하다. 본 연구에서는 중소규모 매립지에서 발생하는 매립가스를 중심적환장으로 이송하여 경제성을 가지는 에너지원으로 활용할 수 있는 기술개발을 목표로 하이드레이트 기술을 접목한 기초연구를 수행하였다. 매립지에서 매립가스가 생성되는 과정에 표층부의 균열 및 차수막의 손상과 포집하는 공정에서 블로워 등의 사용으로 질소가 다량 포함되며 질소의 경우 상당히 높은 압력과 낮은 온도에서 하이드레이트를 형성하므로, 매립가스 하이드레이트 형성시 질소의 영향에 대해 알아보았다. $CH_4+CO_2$ System과 $CH_4+O_2+N$ System에 대하여 각각의 실험조건에서 Kinetic을 측정하였으며, 실험전후의 가스 조성을 Gas Chromatography로 정성, 정량 분석하였다. 실험결과 매립가스에 공기가 유입될 경우, 질소의 영향으로 하이드레이트 생성조건이 가압되었고 하이드레이트 내 메탄의 함량비율이 줄어들었다.

  • PDF

Analysis of estimated and actual reductions through registered LFG CDM projects in developing countries (개발도상국 매립가스 CDM 등록사업의 예상실적과 감축실적 분석)

  • Ryu, Seungmin;Pak, Daewon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.2
    • /
    • pp.5-14
    • /
    • 2021
  • As the implementation of carbon reduction measures would be monitored starting from 2023 in line with the Paris Agreement, it is crucial and urgent to control GHGs emitted from wastes contributing to 11% of methane emissions. Despite such importance and urgency, 93% of wastes are deposited in unsanitary landfills in developing countries, presenting challenges to methane management. Against the backdrop, landfill gas-to-energy projects have once again drawn attention for their economic substantiality secured through CDM projects while there has been much research actively carried out to estimate methane emissions and GHG reductions in landfills located in developing countries. Although a signifiant difference was found between estimations calculated based on research methodologies and actual results monitored through registered CDM projects, there has not been a study conducted on what is causing such a difference. Accordingly, the research team conducted an analysis of 18 LFG projects out of 46 that were registered as LFG CDM projects under the UNFCCC and has identified precipitation(28%), malfunction(22%), organic content(11%), amount of landfilled waste(11%) and temperature(11%) as key parameters causing the difference between the amount of methane captured and the amount of GHG reduced.

Production and using of the substitute for farmland from waste concrete and organic wastes (폐콘크리트와 유기성 폐기물을 원료로 한 대체농토의 생산과 그 이용)

  • Chung, Myung-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.58-65
    • /
    • 2001
  • To produce the substitute for farmland were mixed concrete waste and organic wastes. To estirnate the application of the mixture for farmland components in the solid and the leachate from the mixture were analyzed according to the ordinance of the Waste Society in Germany. Plants were cultivated in the mixture and its harvests were measured. The results showed that the mixture from waste may be used for the reclamation of landfill and landscaping according to circumstances, and the best mixture was from 85% of concrete waste, 10% of sewage sludge and 5% of paper mill sludge.

  • PDF

A Study on the Applicaton of Electrical Resistivity Survey in the Contaminated Soil and Groundwater Site (토양 및 지하수 오염지역에 대한 전기비저항탐사의 적용성 연구)

  • Chae, Seungheon;Lee, Sangeun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.525-539
    • /
    • 2020
  • A site containing buried solid waste and treated water and oil storage containers from a leather manufacturing plant was studied through soil and groundwater pollution and electrical resistivity surveys with the aim of identifying areas polluted by leachate generated by landfilling with leather waste and leakage wastewater. It was found that TPH and Zn exceeded environmental standards for soil pollution and, for leachate and groundwater, Cr(VI) concentrations exceeded standard levels for groundwater quality. An electrical resistivity survey was used to elucidate soil and groundwater pollution characteristics and diffusion pathways. Ten survey lines were set up with an electrode spacing of 5 m in a dipole-dipole array. The hydraulic characteristics of soil determined by groundwater contamination surveys matched well the low-resistivity-anomaly zones. Electrical resistivity surveys of areas containing contaminated soil and groundwater that have irregular strata due to waste reclamation are thus useful in highlighting vertical and horizontal pollutant diffusion pathways and in monitoring contaminated and potentially contaminated areas.

Residual Radioactivity Investigation & Radiological Assessment for Self-disposal of Concrete Waste in Nuclear Fuel Processing Facility (콘크리트 폐기물의 자체처분을 위한 잔류방사능 조사 및 피폭선량평가)

  • Seol, Jeung-Gun;Ryu, Jae-Bong;Cho, Suk-Ju;Yoo, Sung-Hyun;Song, Jung-Ho;Baek, Hoon;Kim, Seong-Hwan;Shin, Jin-Seong;Park, Hyun-Kyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.91-101
    • /
    • 2007
  • In this study, domestic regulatory requirement was investigated for self-disposal of concrete waste from nuclear fuel processing facility. And after self-disposal as landfill or recycling/reuse, the exposure dose was evaluated by RESRAD Ver. 6.3 and RESRAD BUILD Ver.3.3 computing code for radiological assessments of the general public. Derived clearance level by the result of assessments for the exposure dose of the general public is 0.1071Bq/g (3.5% enriched uranium) for landfill and $0.05515Bq/cm^2$ (5% enriched uranium) for recycling/reuse respectively. Also, residual radioactivity of concrete waste after decontamination was investigated in this study. The result of surface activity is $0.01Bq/cm^2\;for\;{\alpha}-emitter$ and the result of radionuclide analysis for taken concrete samples from surface of concrete waste is 0.0297Bq/g for concentration of $^{238}U$, below 2w/o for enrichment of $^{235}U$ and 0.0089Bq/g for artificial contamination of $^{238}U$ respectively. Therefore, radiological hazard of concrete waste by self-disposal as landfill and recycling/reuse is below clearance level to comply with clearance criterion provided for Notice No.2001-30 of the MOST and Korea Atomic Energy Act.

  • PDF