• Title/Summary/Keyword: 매립복토재

Search Result 44, Processing Time 0.021 seconds

특허기술평가활용사례-리텍엔지니어스(주)

  • Korea Invention Promotion Association
    • 발명특허
    • /
    • v.30 no.10 s.352
    • /
    • pp.38-41
    • /
    • 2005
  • 산업의 발전과 함께 산업폐기물이 늘어나고 있고 이 폐기물의 처리방법 중 가장 일반적이고 많은 사례가 매립이다. 폐기물을 매립할 때 필요한 것이 복토재인데 우리나라에서 복토재로 사용이 가능한 흙은 매립장을 건설할 때 발생되는 잔토와 건설현장에서 발생되는 흙, 하천의 준설토 등이 있다. 하지만 모든 흙을 모두 복토재로 사용할 수는 없는데, 건설현장의 잔토는 건설폐기물로 분류되어 지정매립장에 매립을 해야 하고 하천 준설토는 2차 오염의 방지를 위해 복토재로 사용할 수 없도록 법으로 금지되어 있기 때문이다. 이런 규제는 복토재용 흙을 안정적으로 확보할 수 없게 하고 수요만큼의 공급이 불가능하게 되어 불법적인 사용 가능성을 암묵적으로 인정하는 현실로 이어졌다.

  • PDF

Leachate Behavior within the Domestic Seashore Landfill(I)- Hydrogeologic Property Identification through In-situ Tests - (폐기물 매립지 내에서의 침출수 거동(I)- 현장조사를 통한 수리지반 특성 -)

  • 장연수;조용주
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.99-109
    • /
    • 1999
  • In the case of domestic general waste landfills, cumulated leachate level is often formed in the landfill due to the waste of high moisture content and it becomes important to characterize the hydraulic properties of the disposed waste. Although many hydrologic studies have been peformed for leachate barriers and pheriperal subsurface environments, few studies have been done to investigate the hydraulic property of the disposed waste and cover soils and to analyse the leachate flow behavior within landfills. In this paper, the geotechnical properties of the waste and buried cover soils are identified through the field experiment including pumping and slug tests. The results of various tests show that the field density of the cover soils is somewhat higher than the maximum laboratory density of cover soils and the vertical flow of leachate and gas in the landfill is prevented by the buried cover soils. The hydraulic conductivities of field pumping test and slug tests are well matched and stayed in the range of hydraulic conductivities of well compacted wastes in the literature.

  • PDF

A Study on Cover Material of Waste Landfill with Engineered Stone Sludge (폐기물 매립지의 복토재로 엔지니어드스톤 슬러지의 활용에 관한 연구)

  • Kim, Youngtae;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.7
    • /
    • pp.5-10
    • /
    • 2022
  • The industrial waste is becoming a big problem in the aspect of spatial and environmental in domestic and international. Therefore, the waste reduction and recycling policy has been being implemented as a way to solve this problem. The engineered stone sludge, which is waste, is generated duing the engineered stone production process. since engineered stone sludge is mostly treated by landfill, an increase in the amount of the sludge leads to an increase in landfill sites and treatment costs. therefore, there is a need for a method of resourcization with engineered stone sludge. So, laboratory tests (Plastic and liquid limits, compaction, unconfined compression and permeability test) were conducted to confirm the possibility of using engineered stone sludge mixed with weathered granite soil as a cover material for landfill in this study. The result shows that the mixed soil material with less that 62.5% of engineered stone sludge can be used as a cover material for landfill.

Reuse of Water Treatment Sludge as Liner and Cover Materials in Waste Landfills (폐기물 매립장의 차수재 및 복토재로서 하수 슬러지 재활용)

  • 이용수;정하익
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.5-12
    • /
    • 1997
  • The potentiality of water treatment sludge as the alternative liner and cover materials in landfills is investigated. A series of tests were performed on sludge admixtures to examine their compaction, compressive strength, leaching, hydraulic conductivity characterisit its and the compatibility with representative leachate within landfills. Results from the tests show that low hydraulic conductivity can berachieved with sufficient stabilizer contents and curing. It is recognized that the hydrauac conductivity decreases with increasing bentonite content and the percentage of bentonite needed to make the hydrauic conductivity below 1$\times$10-7cm/ sec was 40% for water treatment sludge. It was found that the effect of the municipal waste leachate on the hydraulic conductivity of the admixtures is negligible.

  • PDF

Sensitivity Analysis of the Leachate Level of a Landfill to Hydraulic Properties of Cover Soil and Waste (매립장의 복토재와 폐기물 수리특성에 대한 침출수위의 민감도 분석)

  • 주완호;장연수;김용인
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.110-115
    • /
    • 1998
  • In this paper, the sensitivity of the leachate level is analyzed using the program HELP to reduce the high leachate level on the landfill. Hydraulic parameters analyzed were porosity, field capacity, wilting point and initial water content of cover soil and waste. Also, the influence of the difference between the initial water content and the field capacity on the leachate level in the landfill was analyzed. The results of the sensitivity analysis show that the increase of the porosity and the wilting point decreases the leachate level, while the increase of the field capacity and the hydraulic conductivity increases the leachate level. Major parameters to the change of the leachate level were the hydraulic conductivity in the case of cover soil and the porosity, the field capacity and the initial water content in the case of waste.

  • PDF

A Study on the Production of Landfill-Cover Material Using the Physical Characteristics of Sludge and the Reduction of Odor (슬러지의 물리적 특성을 이용한 매립복토재 생산과 악취저감에 대한 연구)

  • Park, Jung Hyun;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.15-29
    • /
    • 2020
  • The aims of this study is to improve physical properties of the sewage sludge and the process sludge generated in the leachate treatment by mixing the dry fuel, to develop the neutral solidifing agents that reduce oder, and to recycle the sewage and the process sludges as landfill cover materials. The mixing ratio (W/W) of sludges and dry fuel was appropriate at about 1:1, and the mixed materials were shown to be homogeneous at that ratio. We could know that when the sludges were mixed with dry fuel, moisture contents and viscosities are reduced, and air passages are formed between particles and particles. The various mixing tests and odor tests showed that the neutral solidifing agent was effective for the odor reduction. The main ingredient of the solidifing agent is the ash of sewage sludge, enabling it competitive in waste recycling and production costs. The landfill cover, using developed neutral solidification agent, improved physical properties to satisfy the quality standards and to increase the compressive strength. It also proved to reduce the value of complex oder and the usage of solidification agent to 1/3 (3,000 to 1,000) and to 1/8 (50% to 6%), respectively, from the comparative study with alkaline solidified landfill cover. Further research is under way to prove that this can be mixed with general soil to be used as a soil improvement agent for plant cultivation.