• Title/Summary/Keyword: 매립가스 추출

Search Result 9, Processing Time 0.017 seconds

Comparison of effectiveness of Aeration Modes on the Removal of Landfill Gases for Landfill Mining (폐기물매립지 굴착사업을 위한 가스치환시 공기공급방법의 효율성 비교)

  • 남궁완;박준석;김정대
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.79-88
    • /
    • 1998
  • The purpose of this study was to estimate the removal potential of landfill gases during landfill mining project. Air injection mode and landfill gas extraction mode were tested. A mode that air injected at one injection well and landfill gas extracted at another extraction well at the same time was also tested to compare. The flow rates of all modes were the same as 15$\textrm{km}^2$/min. Air injection mode was the most effective in removing $CH_4$. Air injection/extraction mode didn't improve the effectiveness of removing CH$_4$compared with air injection mode. Air injection mode were more advantageous than air injection/extraction mode in respect to energy consumption because that of air injection/extraction mode were doubled.

  • PDF

Analysis of collection Characteristics of Landfill Gas Using ]Relative Fluid Permeability of Gas and Water in Waste Landfill (쓰레기 매립지에서 가스-물 상대유체투과도를 적용한 매립가스의 포집특성분석)

  • 김인기;허대기;김현태;김세준;성원모
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.3
    • /
    • pp.35-54
    • /
    • 2001
  • It is difficult to accurately predict each flow rate of landfill gas and leachate extracted from many of wells, which have been completed into a waste landfill containing gas and water. However it may be approximately predicted if we can define only relative fluid permeability of gas and leachate flowing through landfill porous media. Therefore numerical simulation using multi-phase flow equations makes use of ei s input data of the relative permeability which is measured and calculated in laboratory environment like in-situ, and consequently we can quantitatively obtain each flow rate of gas and leachate from collection wells. These series of technologies can provide with the important informations to determine the success or failure of landfill gas energy and landfill stabilization. This paper analyses the characteristics of landfill gas collection by six classes of case studies for none described landfill.

  • PDF

Estimation of Landfill Gas Utilization in Old Landfill (사용 종료 매립지의 가스 활용 방안 평가)

  • Lee, Cheol-hyo;Jeon, Yeon-ho;Lee, Chae-young;Kim, Kyung;Lee, Hwan;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.154-160
    • /
    • 2000
  • Landfill gas (LFG) utilization in old landfill was estimated using LFG models. The results showed that Scholl Canyon model best described the LFG generation. LFG was extracted more than the amount of natural production which caused air inflow from outside that resulted in dilution of methane concentration and increase of oxygen concentration. It was negative for the LFG utilization. Therefore, to use LFG, the plan of stabilization by LFG extraction should be ineffective. The use of LFG will have no problem if LFG is extracted less than the amount of natural production which was estimated based on modeling. At 8 years elapsed from landfill, now, the amount of natural landfill gas production was decreased sharply. The plan for using LFG from old landfill is feasible if LFG is used for the less than the amount of natural production as a small scale even though for the aspect of efficiency, it was less economic than use of LFG just after closing landfilling and it was helpful for stabilization of landfill by LFG extraction.

  • PDF

A Study on Stabilization of Landfill by Air Ventilation in Field (공기주입방식을 통한 쓰레기 안정화의 현장적용에 관한 연구)

  • Lee, Hwan;Lee, Chae-young;Jeon, Yeon-ho;Kim, Kyung;Kim, Doo-il;Lee, Cheol-hyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • Landfill and lysimeter experiments were conducted to estimate the optimum air injection method for the degradation of waste in landfill and the pre-stabilization. Continuous injection with low pressure and quantity can be effective for pre-stabilization of old landfill due to the lower contents of volatile solids in landfill. Air injection and landfill gas (LFG)extraction showed that the SVE (Soil Vapor Extraction) effect by air ventilation was more significant than the biodegradation of organics. Theses results suggested that they could accelerate the biological stabilization of organic waste in landfills. It is also expected that they would reduce the problems including gas emission during the landfill mining, separation and/or transportation to such levels that might be discharged directly to the atmosphere or with minimal treatment, if required.

  • PDF

Development and Application of a Landfill Gas Migration Model (폐기물 매립지에서의 가스 거동에 관한 모델 개발과 적용)

  • Park, Yu-Chul;Lee, Kang-Kun;Park, Chul-Hwi;Kim, Yong-Woo
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.325-333
    • /
    • 1996
  • numerical model is developed to estimate gas flow in the landfill site. Darcy's law, the mass conservation law, and the ideal gas state equation are combined to compose the governing equation for the steady-state and transient-state gas flows. The finite element method (FEM) is used as the numerical solution scheme. Two-dimensional radial symmetric triangular ring element is used to discretize the simulation domain. The steady state model developed in this study is compared with AIRFLOW that is a commercial model developed by Hydrologic Inc. Mass balance test is performed on the transient gas flow simulation. The developed model is applied to analyze the gas extraction experiment performed by Daewoo Institute of Construction Technology at the Nanjido landfill in 1993. The developed model was registered at Korea Computer Program Protection Foundation.

  • PDF

Physical Characteristic Analysis of Municipal Solid Waste for Estimation of Gasification Pretreatment Condition (가스화용 전처리 조건예측을 위한 생활폐기물의 물리적 특성 분석)

  • Yoon, Youngsik;Lim, Yongtaek;Park, Sunam;Gu, Jaehoi;Im, Nakjun;Han, Haengseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.171.1-171.1
    • /
    • 2011
  • 폐기물의 처리방법은 중간처리와 최종처리로 구분되며, 중간처리의 방법으로는 고형화, 생물학적 처리(소화), 화학적 처리(중화/침전/추출), 자원화 및 재활용, 소각/열분해용융/가스화 등이 있다. 최종처리 방법으로는 매립, 해양투기 등이 있으며, 과거에는 폐기물의 처리 방법으로 최종처리가 많이 이용되었으나 현재에는 지속가능한발전의 이념아래 폐기물의 자원화, 청정에너지의 생산 등을 이유로 전처리 기술이 많이 보급되고 있는 추세이다. 남원시에서 발생되는 생활폐기물은 2010년 통계에 따르면 하루 평균 약 43돈에 이르고 있으며, 매립지의 사용연수를 연장하기 위한 중간처리 방법이 검토되고 있다. 생활폐기물의 가장 일반적인 중간처리 방법으로는 소각, 열분해용융, 가스화 등이 적용될 수 있으며, 이와 같은 열적처리는 폐기물의 감용 및 감량 효율이 높은 중간처리 방법에 속한다. 이러한 열적처리를 위해서는 폐기물의 물리적 특성에 대한 조사 및 검토가 가장 먼저 선행되어야 하며, 본 연구에서는 남원시에서 발생되는 생활폐기물의 성상분류, 삼성분분석, 원소분석, 발열량분석 결과를 통해 가스화에 적합한 전처리 조건을 예측하였다.

  • PDF

Principle and Application of Biofiltration (바이오필터 기술의 원리와 적용에 관한 고찰)

  • Namkoong, Wan;Park, Joon-Seok;Lee, Noh-Sup
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.60-68
    • /
    • 2000
  • Biofiltration is an environmentally-sound technology for elimination of VOCs and odorous compound from low-concentration, high-volume waste gas streams because of its simplicity and cost-effectiveness. It can be appled to the treatment of gases from publicly owned treatment works, composting facilities, landfill sites, and soil vapor extraction systems. The ability to design an effective biofilter system involves a combination of fundamental biofilter knowledge, practical experience, and bench- and pilot-scale testing. The objective of this paper was to review principle, design parameters, operational conditions, case studies, and economy of biofiltration through literature.

  • PDF

Quantification of Volatile Organic Compounds in Gas Sample Using Headspace Solid-Phase Microextraction (고상 미세 추출법을 이용한 가스시료 중 휘발성유기화합물의 정량 분석)

  • Kim, Jae Hyuck;Kim, Hyunook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.906-917
    • /
    • 2013
  • The purpose of this study is to quantify volatile organic compounds (VOCs) in gas sample using headspace solid-phase microextraction (HS-SPME) coupled to GC analysis. The optimal HS-SPME conditions was CAR/PDMS fiber and 30 min absorprion time for the analysis of various VOCs. In optimal conditions, 80 VOCs could be detected within 1 ppbv and even less than 0.0005 ppbv especially in the case of BTEX. However, fiber reproducibility on adsorption efficiency was 1~9.2% (between the same fiber) and 5.9~13.5% (between the other fiber). We successfully determined 35 VOCs in landfill gas with this method and found that VOCs of high concentration are emitting from vent pipe of closed/open landfill site under the HS-SPME conditions. This method may apply to VOCs/odor determination from various atmospheric environmental samples as well as landfills.

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.