• Title/Summary/Keyword: 매개변수 가진

Search Result 175, Processing Time 0.026 seconds

Natural Disaster Damage Cost Prediction Model based on Neural Network and Genetic Algorithm (신경망과 유전자 알고리즘을 이용한 자연재해 피해예측 모델 연구)

  • Choi, Seon-Hwa
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.380-384
    • /
    • 2010
  • 기후온난화, 국지성 호우 및 대규모 태풍으로 인한 피해가 증대되면서 사회 경제적 손실 또한 날로 증가하고 있어 재해로 인한 피해 발생가능성을 효율적으로 예측하는 모델을 통한 선제적 대응이 필요하다. 재난 재해의 위험성 분석 방법은 주로 확률 통계기법을 기반으로 하는 연구가 주류를 이루었으나, 본 논문에서는 포착된 현상의 데이터를 이용해 그 데이터를 지배하는 경험적 규칙성을 학습하고 획득하는데 다른 기법보다 탁월한 성능을 가진 신경망 모델을 적용하여 자연재해 피해예측 모델을 연구하였다. 1991년부터 2005년 사이에 우리나라에서 발생한 자연재해의 피해자료와 기상개황 자료를 이용하여 지역별 자연재해로 인한 피해를 예측하는 신경망 모델은 우리나라 232개 행정구역에 대하여 누적강우량과 최대풍속, 그리고 재해사상 발생 5일 이내의 선행강우량을 입력변수로 하고 총 피해액을 출력변수로 한다. 또한 학습을 통한 최적의 해를 찾기 위해 신경망의 매개변수 학습률, 모멘텀, 편의값을 유전자알고리즘으로 결정하여 학습을 수행 하였다.

  • PDF

Multi-variable and Multi-site Calibration and Validation of SWAT for the Gap River Catchment (갑천유역을 대상으로 SWAT 모형의 다 변수 및 다 지점 검.보정)

  • Kim, Jeong-Kon;Son, Kyong-Ho;Noh, Jun-Woo;Jang, Chang-Lae;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.867-880
    • /
    • 2006
  • Hydrological models with many parameters and complex model structures require a powerful and detailed model calibration/validation scheme. In this study, we proposed a multi-variable and multi-site calibration and validation framework for the Soil Water Assessment Tool (SWAT) model applied in the Gap-cheon catchment located downstream of the Geum river basin. The sensitivity analysis conducted before main calibration helped understand various hydrological processes and the characteristics of subcatchments by identifying sensitive parameters in the model. In addition, the model's parameters were estimated based on existing data prior to calibration in order to increase the validity of model. The Nash-Sutcliffe coefficients and correlation coefficient were used to estimate compare model output with the observed streamflow data: $R_{eff}\;and\;R^2$ ranged 0.41-0.84 and 0.5-0.86, respectively, at the Heuduck station. Model reproduced baseflow estimated using recursive digital filter except for 2-5% overestimation at the Sindae and Boksu stations. Model also reproduced the temporal variability and fluctuation magnitude of observed groundwater levels with $R^2$ of 0.71 except for certain periods. Therefore, it was concluded that the use of multi-variable and multi-site method provided high confidence for the structure and estimated parameter values of the model.

Disturbance Attenuation for Linear Systems with Real Parametric Uncertainties (실 매개변수 불확실성을 가진 선형시스템의 외란 감소)

  • Yoo, Seog-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.362-365
    • /
    • 1994
  • This paper deals with the disturbance attenuation problem for linear systems with real parametric uncertainties. When there are time invariant parameter uncertainties whose sizes are bounded, a less conservative output feedback controller is constructed such that the closed loop system is asymptotically stable and achieves the prescribed disturbance attenuation level for all allowable parameter uncertainties. In order to demonstrate efficacy of the design method a numerical example is presented.

  • PDF

Analysis of Short-term Runoff Characteristics of CAT-PEST Connected Model using Different Infiltration Analysis Methods (CAT-PEST 연계 모형의 침투 해석 방법에 따른 단기 유출 특성 분석)

  • Choi, Shinwoo;Jang, Cheolhee;Kim, Hyeonjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.26-41
    • /
    • 2016
  • Catchment Hydrologic Cycle Assess Tool (CAT) is a model for hydrologic cycle assessment based on physical parameters. In this study, CAT was applied for short-term runoff simulation and connected with model-independent parameter estimation (PEST) for auto-calibrating parameters. The model performance was compared with HEC-HMS, which is widely used for short-term runoff simulation. The study area is the Pangyo Watershed ($22.9km^2$), which includes the Unjung-Cheon and Geumto-Cheon tributaries of the Tan-Cheon stream. Simulation periods were selected from six rainfall events of a two-year period (2006-2007). For the runoff simulation, CAT was applied using three types of infiltration methods (excess rainfall, Green and Ampt and Horton). Sensitivity analysis was carried out to select the parameters and then CAT was optimized using PEST. The model performance of HEC-HMS and CAT-PEST for the rainfall events were within an acceptable limit with Nash Sutcliffe efficiencies (NSE) of 0.63-0.91 and 0.42-0.93, respectively. The simulation results of HEC-HMS have high accuracy in the case of rainfall events that have a sensitive relationship between initial soil moisture conditions and runoff characteristics. The results of CAT-PEST indicated the possibility of reflecting a real runoff system using various physical parameters.

The Applicability Study of SYMHYD and TANK Model Using Different Type of Objective Functions and Optimization Methods (다양한 목적 함수와 최적화 방법을 달리한 SIMHYD와TANK 모형의 적용성 연구)

  • Sung, Yun-Kyung;Kim, Sang-Hyun;Kim, Hyun-Jun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.121-131
    • /
    • 2004
  • SIMHYD and TANK model are used to predict time series of daily rainfall-runoff of Soyang Dam and Youngcheon Dam watershed. The performances of SIMHYD model with 7 parameters and TANK model with17 parameters are compared. Three optimization methods (Genetic algorithm, Pattern search multi-start and Shuffled Complex Evolution algorithm) were applied to study-areas with 3 different types of objective functions. Efficiency of TANK model is higher than that of SIMHYD. Among different types of objective function, Nash-sutcliffe coefficient is found to be the most appropriateobjective function to evaluate applicability of model.

A Parametric Study on Rupture Disc with Radial Slit of Pulse Separation Device (원주방향 슬릿을 가진 파열판의 매개변수 연구)

  • Han, Houk-Seop;Cho, Won-Man;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.261-264
    • /
    • 2010
  • Dual Pulse Rocket Motor is a solid rocket motor with two grains separated by a bulkhead and rupture disc. The elasto-plastic explicit dynamic analysis of rupture disc was conducted by the finite element method. The effect of the slit geometry of rupture disc with radial slit was parametrically analyzed in terms of rupture time and shape. The results can be used to control the rupture pressure by changing the slit geometry of rupture disc.

  • PDF

A New Construction of Quaternary LCZ Sequence Set Using Binary LCZ Sequence Set (이진 낮은 상관 구역 수열군을 이용한 새로운 4진 낮은 상관 수열군의 생성법)

  • Jang, Ji-Woong;Kim, Sang-Hyo;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.9-14
    • /
    • 2009
  • In this paper, using the binary (N,M,L,1) low correlation zone(LCZ) sequence set with specific property, we propose the construction method of a quaternary LCZ sequence set with parameters (2N,2M,L,2). The binary LCZ sequence using this method must have period $N{\equiv}3$ mod 4, balance property, and specific correlation property. The proposed method is modified from the construction method of binary LCZ sequence set by using binary LCZ sequence with specific condition proposed by Kim, Jang, No, and Chung[4].

A Numerical study on Behavior of Soft Clay Soils with Installed Buttress Type Self Supporting Composite Wall (격벽형 중력식 2열 합성소일벽(BSCW)공법을 적용한 연약점토지반의 거동에 대한 수치해석적 연구)

  • Kim, Dongkwan;Jung, Hyun-Seok;Choi, Hangseok;Won, Jongmuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.15-23
    • /
    • 2019
  • In this study, the displacement of soft clay layer with installed Buttress type Self supporting Composite Wall (BSCW) was investigated using numerical method. The model was validated using the field displacement data at the front center of BSCW and parametric analysis of the model was implemented at varied cohesion, elastic modulus of 3 different clay layers (soft, medium, and stiff). In addition, parametric study was also performed for varied center-to-center distance of bottom cement grouting columns installed by jumbo special pattern (JSP) method. The results of parametric study demonstrated that the displacement of BSCW is the most significant in soft clay layer and low center-to-center distance of grouting columns is required at relatively low elastic modulus of clay layer.

Analytical Parametric Study on Pullout Capacity of Embedded Suction Anchors (매입된 석션앵커의 인발력에 대한 분석적 매개변수의 연구)

  • Boonyong, Sorrawas;Park, Ki Chul;Kim, In Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.182-189
    • /
    • 2015
  • The Embedded Suction Anchor (ESA) is a type of permanent offshore foundation that is installed by a suction pile. To increase the loading capacity against pullout, three wings (vertical flanges) are attached along the circumference at 120 degrees apart. Analytical parametric study using the proposed analytical solution method has been conducted to identify the effects of several parameters that are thought to influence the behavior of ESAs. The analysis results show that the pullout capacity increases as the anchor depth and the soil strength increase, and decreases as the load inclination angle increases. The anchor having square projectional area and being pulled horizontally at the middle of its length provides the highest pullout capacity.