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Disturbance Aticnualion for Linear Sysicms
with Real Parametric Uncertainties
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Finally, matlrix A is called stable if all its cigenvalucs

Abstract- This paper deals with the disturbance attenuation
problem for lincar systems with real parametric wncertaintios,
When there are time invariant parameter uncertaintics whose
sizes are bounded, a less conservative output feedback
controller is constructed such that the closed loop system is
asympiotically stable and achieves the prescribed disturbance
ottenuation level for all allowable pammeter uncerlninties. In
order o demonstrate  efficacy of the design method @
numerical example is presented.

L. Introduction

When there  are  parameter  uncertaintics, the quadratic
stabilization theory scems to be an cffeclive means for
desigming a robust controller./1M2] The problem of gundratic
stabilization is to find a feedback controller such that the
closed  loop system is  stable with 3 fixed und
uncertainty-independent  Lyapunov function. Xie and Souza
consider the problem to design a controlier such that the
clused loop  system is quadratically stable and achieves a
prescribod  level of disturbance  attenuation. {3141 But, their
results may be conservative since they require a fixed
Lyapunov function for all parameler uncertaintics. .

Very recently, the ‘analysis resulls from absolute stability
theory have been used to design a robust controller for
systems  with  real  parametric | uncertainties[51-{7]  The
resulting  state space stability criteria are in the fonin ol
Riccali cquations and parameter dependent Lyapunov functions.
‘Thus, the use of parameler dependent Lyapunov  functioms
reduces  conservalism  for  the real paramcler  robustness
problem. Using a parameter dependent Lyapunov function,
Iow et al, present a synthesis method for rubust controtlers
that minimize an overbound of an /i performance
objective.l7] However, in order to use the method given in (7]
it is necessary to solve some coupled Riceall and Lyapunov
type cquations. .

in Uhis pagxr, we are going o attack the ncarly same
problem that Xie ¢t al. considered in [4]. Xie et sl considered
a lincar system whose real pacumelric uncertainties (possibly
time varying) are bounded. llowever, we consider a lincar
system with time invariant real parametric uncertainties whose
sizes are hounded. Up to present Lime, an effective method  to
solve the disturbance altenuation problem for lincar systom
with time invariant parametric uncertainties may be to use the
method presented by Xie et al even if the wider class of
parameter  uncertainties  is  considercd by  them.  When
paraneter uncertainties are time invariant, we will present a
lt,is.s conservative design method than that suggested by Xic ¢
H1N

The notation is standard. 1 denotes the sct of real
numbers, K" devoles e n dimensional  Euclidean  space
identified with n*! vectors of real numbers, "™ denotes
the set of all real matrices, and e { +) denotes the rea
part. We denote the identity matix by {1 and the zero natrix
by 0. When it is not clear to know the dimension of the
matrix from the context, we will use Oawm and [m to denote
the n*m zero matrix and the m*m identity matnix
respectively, We will use A7 to denote Lie transpose of the
matrix A, For symmetric matrices @1 and @2, 1> Q2
(Q12Q2) i Qi~Qz is positive definitelpasitive semi-definite).

{(Li{A)) have striclly negative real parts, and ¢{A) denoles
the spectrl radius of A and j=V-1, Bzlz denotes the

usual Lz norm of 2z, Qe Rzll§=j; 272dt. We say that
z€L2M0, @] if Jzllz< 0o,

1. Preliminaries

Consider a finile dimensional linear system described by
x=Ax+ Bu )
y=Cx+Du

where AER™", BER™™ CER™", DER™™ and p=m.
Lot GUs)=Clsi~-A) "B+ D,

Definition . . .

1. ‘The system (1) is said to be strictly positive real 5{ ’ILS
transfer function G(s) is avalytic in He(s)20 and satisfics
GG+ 6T () >0 for we [0, @), . .

2. The system (1) is extended strictly positive real(ESPR) il
it is strictly positive real and p+pT>0.

With the aid of the f_u!lm\"in:: lemima, one can casily check
whether the system (1) is ESPR or not

Lemma 12 (S et al [8]) Define the following algebraic
Riceati tnequality (ARD .

ATX+ XA C-BT X (D DT M C-BTX) <0 @
I'hen the following statements are equivalent.

iy ‘The systemn (1) is ESPHR and A is stable

i) The matrix D+D7 is positive definite and the ARI (2)
has a solution A>0

Now, we arc ready lo slate the ESPR control problem
which is to synthesize a dynamic outpul fcpdchk controller
such that the closed loop system js ESPR. Consider the plant
givcp by

x=Ax+ hw+ Bu
zi=Cix+ Punw+ Dipu 3)
ye Cox + Dyw
where AER™ B eR™™ men™™ Cenr™”,
DRER™™  DpeR™™ Cen™"  DueR™™  and

maSpnprSmy,  mEm.
We Dbriefly imtroduce
ESPR control problem.

a controller design method for the

Define o
RUX)= [A=BiCi=He Bl DEDR) "DRCY X
*X[A- B - (B BDXDEDR) DRG] W

s XUBT-(Ba- BD X DRV (- B} )X
+Ci{1- Dyl D) -'DE]CI

SN= [A-IHO=BiDRDEDR) (Ca DuCDIY
Y[A-BC - B DEDE D) (Co- DAl ©
YT (Com D YT (D DR N Ce-DuCo Y
+ B3I - DA D2 DR DB
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F(X)= -(DLDy (BIX+ DR C-B{X)) ©
UYy= —(YCh -y CDDID Dabid

Theorem 2 0 (Sun et al. 18D Assume that 1) (A, B2) and
(Cs, A} arc stabilizable and detectable respectively and i)
DEDyw and Dald are nonsingular. Then there cxists a

strictly proper controller such that the closed loop system is
ESPR AT and only if

i) The ARD R(X)<0 has a positive solution X,

i) The ARL S(Y)<0 has a positive solution Y7y,

i) The spectral radius p(Y X3 <1,

Morcover, when these conditions are satisfied the controller
Xe=AwatBry, 1= Cery achieves the ESPR contrul problem,
where

Ax= A+ Bolr+ (=Y X0 LiCar by,

By= -U-Y: X 'Ly, Ge=Fy,

= F(XD, L= LY, (7)

b= ~(BrrUI=Y X0 LiDa) Cr-BIX e D1ip
(=Y XY R(X ),

Itemark 1 @ When DRDw or DiDz is singular, one can

also use Theorem 2 by invoking perturbation arguments.

111, Problem Statement

We consider the class of uncertain lincar sysieins described
by state space molels of the fonn

X = (A+AA) x + Bywi + (B2tAB) u
z1=Cix + Dpu (&)
y = (Ca+tAC) x + Danoun + (DzrdD) 1

where x€R" is the stale, w€R™ is the control input,
wE€R™ is the disturbance input, YER™ is the measured
output, 21€R™ is the controfled output,
A, By, Ba, Cy, Co, Dy, Dy and  DUm are real constant
nalrices of approprinte dimensions that describe the nominal
system and AA, AL, AC wad AD are real valued  matrix

functions Tepresenting parametric uncertainties. The parametric
uneertainties are of the forn

A A Iy
" = g D {
[sc aw) [U’O}ILCO ol ©
where Bo€R™™, Dn€R™™, Coe ™", Dpel™™ ae
known constant mutrices  denoling  the  structare of  the
parametric  uncertainties,  Without  loss  of  generality,  we

assume FER™ {5 an unknown dingonal matrix satis{ying
OSFsM
where M is an inverlible diagonal matrix.

Remark 2 @ Suppose that I satisfies the flollowing gencral
bound condition MiSF<M,  Then,
{A*AA Bz*AH] -
Ca+AC Dyg+AD,
{ A+BoMiCot A Br+ BoM1Du+A T
Co+ DM 1Co+A T Do+ Do Dep+ b E]
where

B AB) 1 oY 7

{AC AD] {D ]I[Co Del,
0< FSMa-M,y

Hence one can recover the same kind of condition (10) if

A, Bz, Cp, Dp oand M are replaced with A+ BoM Gy,
Ba+Bod D, Ce+DpMiCo, Dz+DadiDe and My-M;
respoctively.

Also we have the following assumption.

© Assumption !
1) (A, B2) is stabilizable,
2) (Qz, A) is detectable.
3) DhDr and Dabj are invertitle,

The design objective s to synthesize o Ynecar dynamic
output feedback controller for the system (8) such that the
closed  leop  system s asymplotically  stable  and

Fzil 2<y i ll 2 for any nonzero wi€ L0, ®) where Y is
a preseribed level of disturbance attenuation.

1V. Stability with « Norm Bound

In connection with the system (8, we introduce an

cqmv(:luzt system given by

x=Ax+Bowo + Bywi + Bz«

zo= Cox + Do

21= Cirx + Dppu an
v=ECrx ot Dpwe* Dyuwn 4 Dmow

where we=Fay
Suppose ih.nt an output feedback controtler deseribed by

Xk = Ak X + Bry 0]
= Ce Xk
is applied to the system (11). Then the closed loop system
hecomes
Xe = Aexe * Do wo + Bieuwn
zo = Coc Xe {13)
v = Cre X
x ne A B2Cx
o =l *¥len™, A= ]
where e [x;‘] n < [B;(Cz At BeD2Cr)’
Ho [ ™ =
Toe= = R Co=l Co DuC and
Boc {B;J):n]' Bie [l}kl)zl w= Co DuCil

Cie=l C1 DrCil.

For convenience, we define

= v = Co - N Onpemt
Be=llioe Ihd, Co [()ml*m-}' N {Oml'mo Omlcml},
Sl D Omoem] | (oM I 14
o [Oml-w Omlmxl] and Jte [ 0 1/271 -Reas. ay

for some mo*me diagonal matrices N20 and D>0. In order
to proceed further, it is necessary to slate a technical lemma
which is uselul in the prool of Lemma 4

Y and any real

Lemma 3 Given ony real matrix

symmetric X>»0, Z>0 such that [;}T ]>0
e Crxvtixto
Then we have {},r /] { o 0} 20,
ol {proof} Using the block matrix inversion formula vaen in
' Yot Xy IYA y Tyt -X'I)A ] .
B I R ph (19)
where A=2-YIN"TY,
Since 4>0,
X v »1_[‘\,-1 ()]= [\, ’)'A Tyt Lyt ’}’A } '
{1" z] 0 0 -5 Ty I {6
= [ Xz Y}A H-yTx ! f) 20
This completes the proof, QED.

Lemma 4 © Suppose that there exist a symmdnc P>0,
N20 and I)>0 such that

) Re+RI>0 an

i) ATI'""PA + (i, Clc*(BcP*RCﬂr*UCz {18)

(Rt RO HBIPeNCA e+ DC<O

Then, for all admissible 7 satifying (10),

1) the closed loop system (13) is asymplotically stable and

ii) the controlied output 21 satisfies §z182<Ylwill 2 for
any nonzero wi€ La{0, ®l,

(proof) In order to prove asymplotic stability, we consider
the l.dndadum Lvupmmv function

V=xIPx-+ziFNzo {19)
which is obvm\x\ly posilive definite. Note that our Lyapunov
function  candidate  depends  on unknown  parametric
uncertainties. Alung the trajectories with w=0, we have

A T ATP PAIA Zwoﬂlx[’Xero"QWON

dt

< x5 AP+ PAOxA 20 BEPx,
4ZwuN(/w(/\(re*rﬁorwo)+2wul)(zo‘hl"wo) (20
YA P+ PAOx A 208 BEP+ NCocAc* DCoo)x.
-2 (DM = NColBochwo
Define Jto=DA1" *N(,'&-Iioc
Since muelé{ j‘;‘:*gf&v "‘icltf’“]w Ro+RI>0. By

completion of square in (20) we have

I
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_r_llis TP 47 T " ;
dr S xelAcP+PAAMBEP+NCocAct DC)T
(Ro+ B3 UBEP+NCoeA e+ DCo) Lxe
~[wo= R+ RO UBLP+ NCiA e+ DCoIx]”
g+ RD[wo= (Ro* 1) BEP+ NCool e+ UCoe)x.)
S xI{AIP+ PAABEP+ NCoel o+ DCx)T
(Ro+ RO MBLP+ NCoc et DCo) Ixe

Using Lemma 3 and @
BIP+ NC o+ gcﬁ{u&mwcmaucw}
. Bl ’
(BIP+NCAH DCOT(RARD UBIP+NCA~ DCY
~(BEP+NCool e+ D Coc) o+ 12])
(BLP+NCohc+ D) Cov) )

=i 1’+1VC¢,A¢4-}7C¢)T((lt‘al(cr)"-{ ‘”"*0’"3"' g])
(BIP+NC o+ DC
0

Accordingly, we can conclude that the unforeed syster is
asymplotically stable since '%lt,-<0 from (18) and (22).

Finally 1o prove disturbance atlenuation, we assume  that
x0}=0 and we introduce

.I=J(; (zlz1-Ywlwyde. » (23)
Sixnilixr!z as in the proof of asymplotic stability part,
VES L [zle—‘r?wirwﬁ 'gt—(xrl’xc*z{ﬂ\/zo)

+203 D20~ M wo)dt

~xe(®)T(P+ CEFNCoolxel ) 4

| ! . dz
< j; [z?zri‘zwfwx + #(X:PX:)*&Q;‘NT{;L

:zubxzu—m"wo)]dt
= L H{xewo,11)dt
where
I xawe, ) =xI (AP + PA+ CLCiOxe ,
+2wT(BIP+ NCol o DColxe= 20 Re+ RDw 5
and w=fwd w])’.
After completion of square, we obtain
Hixewewn)S xIAIP+PA+CLCw
+HBIP+NCA A DCHHRARDT  (26)
(BIP+ NCa e+ DCOlxc

Thus, /<0 and this completes the proof, QLD,

Rcma‘rk 3: Suppose that FTF<p?. This implics that
~pIsF<pl, i we specialize Lemma 4 to the case where
N=0 and DB—CIP-'I for a positive constint &, R+RY is
a!wn;;s positive q_c{irmitc and (18) becomes

AP+ PAHT P PRADTP + 0 PBaBBEP + 1/E ChCoct CRCie< 0

L. 2D

Note that (27) is just the same condition derived by Xie et
al.(sce Lemma 3.1 in 4], Even if there don’t exist P>0 and
€20 such that (27) holds, there may exist P>0, N20 and
D>0 such that our sufficient conditions are satisficd. Thus,

we can expect that our conditions in Lemma 4 are less
conservalive than that given in [4],

V. Conlroller Synthesis

. In this section we present a controller synthesis method by
interconnecting  our control problem with the ESPR control
problem whose solution is presented in section 1L

5.0 The ecase where De=0 and Dp=0

The fact that De=0 and D==0 implies that the originad
plant (8) is striclly proper and  AB=0. Define an ausiliary
system from the equlxalent system (11} as follows,

xﬂ/'fx*fj‘lw*r 2 U
z= Oix+Du b+ Dpa 2%
y=CzX"Dz:u7

g = [ Ce oMt 0
where B=[Boe 41, C [Omhn]' I [ 0 121%m
A=A, By={ 8RRV Y Cuep], Ba=1in,

Py A P -

Cﬁ_[(mn ) (Ncmuc)]' Du=1/2,

Cy

. Ty -2 5

Dume[ (R+17) PR e,
= .

Da=[ (D DalB+RT Y 0 20m]

Note that the system {28) satifies the conditions given in
Lemma 2,

] -NcB,

‘Theorem 5 Suppose that there exist N20 and D>0 such
that i) 72+R7>0 and i) the ESPR control problam is solvable
for the auxiliory system (28). If the controller from the above
ESPR control problemn is applied to the equivalent system (1),
then the resulting closed loop system is asymplolically stable
and furthermore Yzl 2<tY§willz for any nonzero
i € L2} 0, ®],

(proof) Let the controller designed from the ESPR control
problem is given by

Nk = Alexx t Dy 29
n o= Ck Xk

When the controller (20) is applicd to the auxiliary system
(28, the clgscd foop system is LESIPR and represenled as.

Xe = Ae Xe + )’;c w (30)
2= Coxct Deuw
~ 1 A By 3 = B }
e " . B .
where /! [Bx & A ] < [Bk Da

2=[ i Drcl, De= Du. .
Since the closed loop system (30} is ESPR Twe have
ATPep A O B P C- B PI<0 3y
for some >0, .
Suppose that the controller (20) is applicd 1o the equivalent
system (11). Since Do and Dz are assumed to be zero, the
vt ie frive . [ A DG
closed loop systom is given by {13) with A, [U;Cz Ax ]
and Coe=[ Co 0L, )
flence, in_order 1o prove the theorem it suffices to prove
that the conditions griven in Lemma 4 are satisficd, Since
ie= [ ! 0. - Bese
o 12 (32)

(DAY 0 1IN 0 Co 0] Bo I ]=”
{ o 1/2721] {o o” 00 [uwm BiDn
R+1T>0 implics RA+RI>0,
Using simple block matrix manipulations and definitions of
Aey Be and e it is ensy to see that
AIP+PAACLCer (BIP+ NCal e+ DCY?
e RN UBIP+RCAH DICH) .
= ATPeP Rer (- BIMTC B BIM<0
This completes the prool, Q.LED.

52 ‘Ihe case where De and Dz are nol nccessarily
7010 ) .

One can nol synthesize a controller by  directly fql!owu!g
Uie proof of Theorem S since R.#H in this case. Thus, in
order to check R¢+R¢'>O, By must be known. Accordingly
we are going o use an augmentation method so that an
output  feedback  controller can be cnnsm!clcd by dircclly
following the method given in scctivn 5.1. ‘The augmeniation
scheme is shown in g, L

In Fig. 1, an me*mz strictly proper stable transfer

function @(s) is connceted to the input channel. For
s a R -
simplicity, let @Q(s)= S+ ] where o is a positive

constant. "Then the augmented system Gols) in Fig, 1 can be
represented as _
Xa = NAaXo * Bogwo + B wr + Bz ou
zo ® Ciu Xa * Do 1 (34)
21 = CaXe* Do nt _
v CyXat Doawe + D2ewy * Dxa
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where
XaER™™ A =[A H:a] {l]o] =[Bx] ?":[ 0]
a o ()-ul'um>0'Bla O,B )
Cou=1Co Do), Dypa=0, Cro={C1 Dizl, D12a=0,
Coa=[ C2 D2l, Dae=Dw, Daa=Da1, Dma=0
qu. the system (34) is in the form of the system
considered in section 51 so that we can construct n+mz
dimensional controller u=K(s)y. Tinally we can synthesize an
n+2mz dimensional output feedback controller 1= Q(s)K(s)y.

One may use one of the controller reduction methods in order
to reduce the dimension of the controller.

VI Hlustrated Example

Inorder to demonstrate our design method we present
simple numcrical example. In (8) we assume that our system

is given by
21 [0 0 _r! _[1o -
e P T P Il A P A
=156 = = =[f =[f
C=15 51, D=0 1),D2=0, M=[/ é] ap=[l], W
AC=[0 0], AD=0
here / is an unknown bul constant uncertain parameter. We
choose the prescribed level of disturbance atlenuation Y=4.

Hence the structure malrix of the parameter uncertainty
Bo, Co, D and Dw can be obtained by

130=[(’)], o=[1 1], Dn=0, Du=l.

Let -Mo<f<Mo. Note that A, DBz and M must be
replaced  with  A-BoMoCo, Ba-BeMoDe and 2Mo
respectively in constructing (28).  We choose a=10000 in
oblaining the augmented system (34). By using a secarch
technique, we are going o find the maximum Mo such that
our design method can give an admissible controller equation,
When  Mo=05379 we can conslruct an output fecdback
controller by choosing N=1579 and D=8316. The resulling
controller {s)K(s) in Fig. 1 is given by

. - 10000(8.732s% + 873205 + 258)
QU((s)= ; . 5
ML) = T 0000) (574 0RTTs2+ 1176605 +340) © )

In order to reduce the controller dimension we use the
balance and truncate method which yields the sccond order
controller given by

. 8.878¢+0,0265
Kolg)=-—5 20008 T0Ve00 an
)= T 1965+ 0.0%583 )

When Q(s)K(s) and K-(s) are applicd to the system (8),
the resulling /1 norm of the closed loop system are depicted
in Fig, 2.

In order to illustrate that our design method is loss
conscrvative, we also synthesize a controller by using the
Xie’s method presented in [, When Mo> 05172 we can’t
design an admissible controlier by the Xie's method. The
reason is that the Xie's method
quadratic stabilization theory which is somewhal conservative
while our method is developed using an uncertainly dependent

Lyapunov-like function.

VI Conclusions

In this paper, we have considered a disturbance attenuation
problem for lincar system wilh parametric uncertainties, Based
on the uncertain parameter dependent Lyapunov function, we
have derived a sufficient condition which guarantees that the
closed loop system is  asymptotically stable and achicves the
prescribed level of disturbance attenuation for all allowable
paramelric uncertainties, Next, we also have constructed an
outpul feedback controller achieving our design gonl, It has
been shown that our design method is less conservative than
that suggested in [4].
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