• Title/Summary/Keyword: 망간제거

Search Result 122, Processing Time 0.023 seconds

A Study on Operation of Sand Filters Coated with Manganese (망간사화된 모래여과지 운영에 관한 연구)

  • Jeong, Se-Chae;Ko, Su-Hyun;Kim, Jin-Keun;Yoo, Jeong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.558-562
    • /
    • 2006
  • Filtration experiments were conducted to determine the characteristics of manganese removal in filtration using 4 different filter media including sand and manganese sand(MS). Filtration velocity was 123 m/d and the flow rate was $3.9m^3/d$ per column. Duration of these experiments was about one year, and manganese dioxide accumulation, turbidity removal, manganese removal, and organic material removal were examined depending on filter media. When filter influent(residual chlorine 1.0 mg/L) with an average manganese concentration of 0.208 mg/L was fed through a filter column, the sand+MS and MS columns removed 98.9% and 99.2% of manganese respectively on an annual basis. When there is need to replace the sand filters with a MS filter to remove manganese, it was shown that the replacement of a partial sand filter with MS had adequate manganese removal.

Evaluation of the Removal Properties of Mn(II) by Manganese-Coated Sand (망간사에 의한 망간제거 특성 평가)

  • Yu, Mok-Ryun;Yang, Jae-Kyu;Kim, Mu-Nui;Lee, Seung-Mok;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.571-576
    • /
    • 2007
  • Manganese-Coated Sand(MCS) prepared with three different methods were applied in the treatment of soluble $Mn^{2+}$ in batch and column experiments. In the bench-scale MCS preparation, the coating efficiency of manganese on the surface of sand increased as the dosage of initial Mn(II) increased. The removed amount of the soluble $Mn^{2+}$ by MCS increased as the solution pH increased, following a typical anionic-type adsorption. The removed amounts of the soluble $Mn^{2+}$ through adsorption was quite similar over the entire pH range, without depending on the contents of Mn on the surface of sand as well as coating methods. When NaClO was used an oxidant, the removed amount of the soluble $Mn^{2+}$ by MCS increased as the concentration of NaClO increased, This trend might be explained by the increased removal efficiency through coating of manganese oxides produced from oxidation of the soluble $Mn^{2+}$ by NaClO on the surface of MCS. From the bench-scale column experiments, the breakthrough of $Mn^{2+}$ occurred after 4,100 bed volume without presence of NaClO while 1.6-times delayed breakthrough of $Mn^{2+}$ was observed in the presence of NaClO. This result also supports that the removal efficiency of the soluble $Mn^{2+}$ could be enhanced by using NaClO.

Evaluation of Mn Removal Efficiency from the Mine Drainage in the Presence of Fe Using Slag Complex Reactors (제강슬래그 복합매질체를 이용한 철 유입에 따른 광산배수내 망간 제거효율 평가)

  • Kim, Dong-Kwan;Ji, Won Hyun;Kim, Duk-Min;Park, Hyun-Sung;Oh, Youn Soo
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.401-407
    • /
    • 2018
  • For the treatment of heavy metals in the mine drainage from the closed mine area, various methods such as passive, active and semi-active treatments are considered. Among contaminated elements in the mine drainage, Mn is one of the difficult elements for the treatment because it needs high pH over 9.0 for its concentration to be reduced. In this study, the efficiency of various slag complex reactors (slag (S), slag+limestone (SL) and slag+Mn coated gravel (SG)) on Mn removal in the presence of Fe, which is a competitive element with Mn, was evaluated to investigate effective methods for the treatment of Mn in mine drainage. As a result of experiments on Mn removal without Fe during 358 days, using influent with $30{\sim}50Mn{\cdot}mg/L$ and pH 6.7 on the average, S reactor showed continuously high Mn removal efficiency with the average of 99.9% with pH 8.9~11.4. Using the same reactors, Mn removal experiments with Fe during 237 days were conducted with the influent with $40{\sim}60Mn{\cdot}mg/L$. The pH range of effluent reached to 6.1~10.0, which is slightly lower than that of effluent without Fe. S reactor showed the highest range of pH with 7.1~9.9, followed by S+L and S+G reactor. However, the efficiency of Mn removal showed S+L>S>S+G with the range of 94~100%, 68~100% and 68~100%, respectively in spite of relatively low pH range. S+L reactor showed the most resistance on Fe input, which means other mechanisms such as $MnCO_3$ formation by the carbonate prouced from the limestone or autocatalysis reaction of Mn contributed to Mn removal rather than pH related mechanisms. The evidence of reactions between carbonates and Mn, rhodochrosite ($MnCO_3$), was found from the X-ray diffraction analysis of precipitates sample from S+L reactor. From this study, the most effective reactors on Mn removal in the presence of Fe was S+L reactor. The results are expected to be applied for the Mn containing mine water treatment in the presence of Fe within the relatively low range of pH.

충적층 지하수의 철, 망간 기작 및 효율적 처리 방안 연구 -강변여과수 개발 현장을 중심으로-

  • 김형수;김충환;김병군;백건하;최현숙
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.125-128
    • /
    • 2002
  • 강변 여과 취수 방식을 활용한 국내 충적층 지하수의 이용을 위해서는 망간에 대한 수처리가 주요 사항인 것으로 나타났다. 강변 여과 방식 취수 원수의 망간 함량은 먹는 물 수질 기준을 부분적으로 상회하지만, 이러한 망간에 대한 저감 처리는 기존의 지표수를 취수하여 처리하는 수처리 공정에 비해서는 상대적으로 효율적인 것으로 판단된다. 실제로, 국내 최초의 강변 여과 방식 취수를 활용하는 창원시 대산 지구 원수는 공기 포기, 급속 여과, 활성탄 여과를 통해, 먹는 물 수질 기준을 상회하는 망간을 효과적으로 처리하고 있는 것으로 평가되었다. 특히, 활성탄 여과가 망간제거 효과를 보이는 점은 특이한 현상으로, 활성탄 내에서도 철 관련 박테리아에 의한 망간 처리 가능성을 시사하고 있다. 또한 망간과 함께 나타나는 철 성분은 망간의 침전 처리에 긍정적인 면으로 작용하는 것으로 판단된다. 한편, 고령군 다산면에서의 실증 플랜트 실험은 전염소처리와 망간접촉여과를 통해 먹는 물 기준 이하의 망간 함량을 확보하는 데는 성공하였으나, 이러한 처리 기작이 안정화되는데 까지는 약 3개월 내외의 시간이 요구되는 것으로 나타났다.

  • PDF

Removal of Cadmium and Manganese Ions Utilizing Astragalus uliginosus L.-Stem Biochar (황기 줄기 바이오차를 활용한 카드뮴과 망간 이온의 제거)

  • Choi, Suk Soon;Ha, Jeong Hyub;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Astragalus uliginosus L.-stems as a by-product of oriental medicine are produced largely in a northern area of Chungbuk province. These by-products do not have any demand and thus usually discarded into the fields as a waste. In this work, a biochar was prepared from the Astragalus uliginosus L.-stem waste for recycling. The biochar was used to investigate the removal characteristics of cadmium and manganese ions dissolved in water. When adsorption equilibrium experiments were performed to treat 50 and 100 mg/L of cadmium ions, the removal efficiencies of cadmium were 100 and 95%, respectively. In addition, the maximum of adsorption amount for manganese ions in 5 h at an initial concentration of 50 and 100 mg/L was found to be as 36.1 and 37.9 mg/g, respectively. Based on the experimental results, it was found that the adsorption amount of Astragalus uliginosus L.-stem biochar for the removal of both cadmium and manganese ions was four times higher than that of the activated carbon. The surface analysis of both biochar and activated carbon samples using X-ray photoelectron spectroscopy (XPS) analysis showed that the oxygen content and O/C ratio of biochar was 2.1 and 2.4 times higher than that of the activated carbon, respectively. In order to enhance the removal capability of manganese, 50 and 100 mg/L of manganese ions were operated at different temperatures. It was observed that these equilibrium was attained in 4 h under 45 ℃ and removal efficiencies were 92 and 53%, respectively. Consequently, the experimental results can be utilized as a new removal technology for eco-friendly and economically treating cadmium and manganese ions dissolved in water.

Enhancement of Manganese Removal Ability from Water Phase Using Biochar of Prinus densiflora Bark (소나무 수피 바이오차를 이용한 수중에서 망간의 제거능력 향상)

  • Kim, Min-Ji;Choi, Jung Hoon;Choi, Tae Ryeong;Choi, Suk Soon;Ha, Jeong Hyub;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.526-531
    • /
    • 2020
  • Manganese ions contained in water phase are acting as a toxic substance in the human body and also known to affect the nervous system. In particular, effective treatment technology is required since manganese removal is difficult due to its high solubility in a wide pH range. In this study, Prinus densiflora bark was chemically modified with hydrogen peroxide, and the modified adsorbent was used for removing manganese ions in an aqueous solution. The modified adsorbent showed high removal capacity of 82.1 and 56.2%, respectively, at conditions of 5 and 10 mg/L manganese ions. Also, the adsorption isotherm from the data was applied to the theoretical equation. As a result, the adsorption behavior of manganese ions was better suited to the Langmuir than Freundlich model, and it was also found from kinematics that the pseudo-second order kinetic model was more suitable. In addition, the changes of Gibbs free energy indicated that the adsorption reaction became more spontaneously with increasing temperature. Consequently, these experimental results may be used as a water treatment technology which can efficiently treat manganese ions contained in water.

Effect of Experimental Factors on Manganese Removal in Manganese Sand Filtration (망간모래여과공정에서 망간제거에 미치는 영향인자)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.86-93
    • /
    • 2006
  • In the drinking water treatment, the aesthetic and color problem are caused by the manganese which is occurring and present in the surface, lake and ground water. The most common treatment processes for removing manganese are known for oxidation followed by filtration. In this study, the manganese sand process was used for removing manganese with river bank filtrate as a source. In the manganese sand process, the residual chlorine and pH are important factors on the continuous manganese oxidation. In addition, space velocity (SV) and alum dosage are play a role of manganese removal. Even though manganese removal increased with increasing chlorine concentration, the control of residual chlorine is actually difficult in this process As the results of tests, the residual chlorine concentration as well as manganese removal were effectively achieved at pH 7.5. The optimum attached manganese concentration on manganese sand was confirmed to 0.3mg/L by the experimental result of a typical sand converting to manganese sand.

Characterization of Uranium Removal and Mineralization by Bacteria in Deep Underground, Korea Atomic Energy Research Institute (KAERI) (한국원자력연구원 지하심부 미생물에 의한 용존우라늄 제거 및 광물화 특성)

  • Oh, Jong-Min;Lee, Seung-Yeop;Baik, Min-Hoon;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2010
  • Removal and mineralization of dissolved uranium by bacteria in KURT (KAERI Underground Research Tunnel), Korea Atomic Energy Research Institute (KAERI) was investigated. Two different bacteria, IRB (iron-reducing bacteria) and SRB (sulfate-reducing bacteria) was used, and minerals formed by these bacteria were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Compared to uranyl ions, ferric ions were preferentially reduced by IRB, showing that there is no significant reduction and removal of uranium. However, uranium concentration considerably decreased by addition of Mn(II). Results show that a sulfide mineral such as mackinawite (FeS) is formed by SRB respiration through combination of Fe(II) and S without manganese sulfide formation. In the presence of Mn(II), however, uranium is removed effectively, suggesting that the sorption and incorporation of uranium could be affected by Mn(II) onto the sulide minerals.