• Title/Summary/Keyword: 말뚝기초 강성

Search Result 74, Processing Time 0.024 seconds

A Study on the Load Distribution Ratio and Axial Stiffness on Existing and Reinforcing-Pile in Vertical Extension Remodeling (수직증축시 기존말뚝과 보강말뚝의 하중분담율 및 축강성 분석)

  • Jeong, Sang-Seom;Cho, Hyun-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.17-30
    • /
    • 2019
  • This study presents the application of the numerical and analytical technique to simulate the Load Distribution Ratio (LDR) and to define axial stiffness on reinforcing pile foundation ($K_{vr}$) in vertical extension remodeling structure. The main objective of this study was to investigate the LDR between existing piles and reinforcing piles. Therefore, to analyze the LDR, 3D FEM analysis was performed as variable for elastic modulus, pile end-bearing condition, raft contacts, and relative position of reinforcing pile in a group. Also, using the axial stiffness ($K_{ve}$) of existing piles, the axial stiffness of reinforcing pile was defined by 3D approximate computer-based method, YSPR (Yonsei Piled Raft). In addition $K_{vr}$ was defined by reducing the $K_{ve}$considering the degradation of the existing piles.

Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation- Soil system Excited with the horizontal Motion (지반의 비선형 특성이 수평방향 운동을 받는 기초지반 체계의 동적강성에 미치는 영향)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.55-65
    • /
    • 2000
  • 구조물 지진해석을 위한 구조물 -지반 상호작용 해석에서도 비선형 지반 특성을 고려한 비선형해석이 요구되고 있어 구조물 비선형 지진 해석을 위해 기초 지반에 대한 수평방향 비선형 해석을 수행하였다. 기초지반은 UBC 분류에서 규정한 보통지반인 Sn 지반과 연약지반인 SE 지반을 고려하였고, 지반의 비선형 특성은 Ramberg-Osgood 모델을 이용하였다. 비선형 지반이 기초지반 수평 및 회전 동적 강성 및 감쇠비에 미치는 영향을 조사하기 위하여 얕은 기초와 묻힌기초에 대해 기초 크기, 지반깊이 및 말뚝유무에 따른 동적 강성 및 감쇠비 변화를 조사하였는데, 지반의 비선형 특성이 기초지반의 선형 수평 및 회전 강성과 감쇠비를 크게 감소 또는 증가시키는 것으로 나타났으며, 기초크기, 지반깊이 및 말뚝유무의 영향도 큰 것으로 나타나 구조물 지진해석시 기초크기, 지반깊이 및 말뚝유무와 함께 지반의 비선형성도 고려하는 것이 필요한 것으로 판단되었다.

  • PDF

Estimation of the Axial Stiffness of Reinforcing Piles in Vertical Extension Structures (수직증축 공동주택 하부 신설 보강말뚝의 축강성 산정)

  • Kim, Do-Hyun;Jeong, Sang-Seom;Cho, Hyun-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.35-44
    • /
    • 2019
  • In this study, the axial stiffness of reinforcing piles (Kvr) for the vertical extension remodeling structures was estimated through 3D finite element analysis. In the computation of the minimum required axial stiffness of reinforcing piles, proposed maximum axial stiffness of old and deteriorated existing piles (Kve) based on theoretical and experimental approaches will be applied. Through this, the required increase rate of axial stiffness of reinforcing piles in order to support the increased structural loading was proposed for end-bearing and friction piles by different slenderness ratio (L/D). The numerical model was validated by comparing the computed results with actual field measurements. Based on the computed results, it was concluded that the end-bearing reinforcing pile needs 44% - 67% increase in axial stiffness to deal with the deterioration of existing piles and support the additional structural load due to vertical extension remodeling.

The Behavior and Resistance of Connected-pile Foundations for Transmission Tower from In-situ Lateral Load Tests (송전용 철탑기초의 현장수평재하시험을 통한 연결형 말뚝기초의 거동 및 지지력특성)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Kim, Dae-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.57-70
    • /
    • 2012
  • For soft ground, a pile foundation is typically used as a substructure of transmission tower. However, differential settlement between the foundations can cause structural damage of transmission tower. The connected-pile foundation is a type of group foundation consisting of four foundations connected with beams, and it was suggested in USA and Japan. In this study, a series of 1/8 scale model pile tests were performed to investigate the effect of load direction and stiffness of connecting beam on the responses of connected-pile foundation. As a result, the load capacities of the connected-pile foundation were larger than those of the conventional group pile foundation. For example, under the given test conditions in this paper, the resistibility against differential settlement was improved significantly for connected-pile foundation and its efficiency was maximized when the stiffness of connecting beams is about 25% of the mat foundation.

Analysis of Load Distribution Behavior in Vertical Extension Remodeling from Stiffness of Existing and Reinforcing Pile by Load Test (현장 재하시험을 통한 수직증축시 기존 말뚝과 보강 말뚝의 강성에 따른 하중분담거동 분석)

  • Kim, Seok-Jung;Wang, Cheng-Can;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.61-72
    • /
    • 2020
  • It is generally considered that differences of axial stiffness between exiting pile and reinforcing pile affect the load distribution ratio during vertical extension remodeling. But there are few cases to verify the effect of stiffness by field load test on load distribution ratio in Korea. In this paper, a series of load tests for micropiles were carried out to evaluate the effect of axial stiffness on the load distribution ratio. First, different types of micropiles were constructed so that conventional micropiles simulated existing piles and waveform micropiles simulated reinforcing piles. Secondly, load tests were performed to evaluate the stiffness of each piles. After then, the raft was installed to make a piled raft system and load tests were applied on foundation to verify the effect of axial stiffness on the load distribution ratio. The experimental results show that the stiffness of waveform micropiles were 2.5 times larger than that of conventional micropiles, and the load distribution ratio between existing and reinforcing piles was increased according to axial stiffness of piles.

A Study on the p-y Curves by Small-Scale Model Tests (모형실험을 통한 말뚝의 p-y 곡선에 관한 연구)

  • Kim, Tae-Sik;Jeong, Sang-Seom;Kim, Young-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.41-51
    • /
    • 2008
  • The load distribution and deformation of single piles which is embedded in Jumunjin sand and Kimhae clay are investigated, based on small scale model tests. Special attention is given to the consideration of flexural rigidity in laterally loaded piles. To consider the flexural rigidity of the pile, tests are performed with the aluminium piles of three different length under different relative densities and undrained shear strength. The test results indicate that the initial slope from the results of tests is proportional to the depth and pile-soil rigidity in both soils. But the increasing rate of the initial slope in the clay is less than in the sand. In addition, the soil resistance is more related to the depth and soil condition than the pile rigidity. Base on the test results, an empirical formula is proposed, which is good agreement with previously published small scale model test and field lateral load test.

Resistance Increasing Factor of Connected-pile Foundation for Transmission Tower in Clay (점토지반에 근입된 송전철탑 연결형 말뚝기초의 저항력증가계수)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.31-41
    • /
    • 2012
  • Pile foundation for transmission tower constructed in weak ground can cause the damage of the tower due to the different settlement between the foundations. In Japan and USA, connected-pile foundations whose 4 foundations are connected each other by beams were used for transmission tower (TEPCO 1988, IEEE 2001). Resistance increasing factors for connected-pile foundation signify increasing amount of resistance due to the effect of connected-pile material. In this study, we performed model lateral load tests of connected-pile foundations for transmission tower and found the resistance increasing factors for connected-pile foundation. The tests were performed in silty clay, and the resistance increasing factors were founded in various conditions that lateral load directions and height, the stiffness of beams in the connected-pile foundations were changed. The resistance increasing factors from our research were presented as a function of normal lateral loading height and normal stiffness of the connected-pile material. The resistances which were estimated from the resistance increasing factors were similar to measured values.

Analysis on the Seismic Load Reduction Effect of a Ground by Considering Pile Strength (말뚝 강성을 고려한 지반의 지진하중 저감 효과에 관한 해석 연구)

  • Kim, Sang-Yeon;Park, Jong-Bae;Park, Yong-Boo;Kim, Dong-Soo;Lee, Sei-Hyun
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.451-456
    • /
    • 2012
  • In this study, a numerical analysis to evaluate the reduction of seismic load due to pile group was performed and compared the peak ground acceleration(PGA) measured at free-field and foundation. The special attention was given to the amplification of seismic acceleration on the foundation due to the pile effects. The analysis considering pile effects was carried out for 4, 8 and 12 piles with same condition by PLAXIS 2D Dynamics. Based on the analysis results, it is found that the overall reduction in seismic load due to foundation and reduction rates are similar irrespective of pile numbers. This study gives a possibility for effective design of piled foundation by reducing seismic load about 20~25%.

Pile-cap Connection Behavior Dependent on the Connecting Method between PHC pile and Footing (PHC말뚝과 확대기초 연결방법에 따른 접합부 거동)

  • Bang, Jin-Wook;Oh, Sang-Jin;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.25-32
    • /
    • 2016
  • The pile-cap connection part which transfers foundation loads through pile body is critical element regarding flexural and shear force because the change of area, stress, and stiffness occurs in the this region suddenly. The purpose of this study is to investigate the structural behavior of pile-cap connection dependent on fabrication methods using conventional PHC pile and composite PHC pile. A series of test under cyclic lateral load was performed and the connection behavior was discussed. From the test results, it was found that the initial rotational stiffness of pile-cap connection was affected by the length of pile-head inserted in footing and the location of longitudinal reinforcing bars. The types of pile and location of longitudinal reinforcing bars governed the behavior of pile-cap connection regarding load-carrying capacity, ductility, and energy dissipation.

Analysis of Bridges behavior Considering Pile rigidity and Soil characteristics (말뚝강성과 지반특성을 고려한 교량의 거동해석)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.103-110
    • /
    • 2001
  • The objective of this study is to investigate the behavior of superstructure considering several factors such as change of pile rigidity, soil characteristics, and the constraint condition of support. The results of this study are as follows: 1. Pile-rigidity computed by the rotating deformed plane method is continuously varied up to approximately 5D(D=diameter of pile) below the ground level. This result is consistent with the previous study$^{(12)}$, in which the pile deformation occurs at approximately $3{\sim}6$ times of pile diameter from the ground level. 2. For bridge structure-pile system, analytical results of internal forces and deformations show different values for modified pile rigidity and unchanged pile rigidity. 3. Detaild analysis considering modified pile rigidity is required for the long-span bridge design with structure pile system.

  • PDF