• Title/Summary/Keyword: 막-전극 접합체(MEA)

Search Result 32, Processing Time 0.019 seconds

CO Tolerance Improvement of MEA Using Metal Thin Film by Sputtering Method in PEM Fuel Cell (스퍼터링 공정으로 제조된 금속박막을 이용한 고분자전해질 연료전지 막-전극접합체의 일산화탄소에 대한 내구성 연구)

  • Cho, Yong-Hun;Yoo, Sung-Jong;Cho, Yoon-Hwan;Park, Hyun-Seo;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • When reformer for fuel cell is used, CO in hydrogen gas leads to a seriously decreased membrane electrode assembly (MEA) performance by catalyst poisoning. The effect of CO on performance of modified MEA by sputtering method is studied in this paper. The experimental results show that sputtered Pt and Ru thin film improve a single cell performance of MEA and sputtered metal thin film has a CO tolerance. The air injection process on anode show improved CO tolerance test result. Moreover, Pt, Ru and PtRu thin film by sputtering had influence on the CO tolerance with air injection process.

Fabrication of membrane electrode assemblies by low temperature decal methods (저온 전사법을 이용한 고성능 MEA 제조)

  • Cho, Jae-Hyoung;Kim, Jang-Mi;Prabhuram, Joghee;Hwang, Sang-Youp;Ahn, Dong-June;Ha, Heung-Yong;Kim, Soo-Kil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.37-39
    • /
    • 2008
  • 본 연구에서는 저온 데칼 전사법을 이용하여 막 전극 접합체(Membrane Electrode Assembly, MEA)를 제조하였다. 제조된 MEA는 직접 메탄올 연료 전지(Direct Methanol Fuel Cell, DMFC)를 이용하여 성능 테스트를 하였다. 저온 데칼 전사법은 $140^{\circ}C$의 낮은 온도에서 촉매 층을 데칼 기판에서 멤브레인으로 전사시키고, 전사된 촉매 층의 표면에 형성되는 것으로 알려진 이오노머 스킨 층의 형성을 막기 위해 이오노머/촉매/카본/기판의 구조로 되어 있는 데칼 기판을 사용한다. 저온 데칼 전사법으로 제조 된 카본 층이 있는 MEA의 DMFC 성능이 카본 층이 없이 데칼 전사법으로 제조된 MEA나 전통적인 고온 데칼 전사법으로 제조된 MEA, 또는 직접 스프레이 코팅법으로 제조된 MEA의 성능보다 높게 나온 것을 알 수 있다. 저온 데칼 전사법으로 제조된 MEA의 DMFC 성능이 향상된 것은 촉매 층 위에 이오노머 스킨이 형성되지 않아 반응물의 확산이 원활하게 이루어지기 때문이다. 이를 위한 특성 분석으로 EIS, CV를 측정하였다.

  • PDF

Design Factors of Membrane Electrode Assembly for Direct Methanol Fuel Cells. (직접 메탄올 연료전지용 막-전극 접합체의 설계 인자에 관한 연구)

  • Cho, Jae-Hyung;Hwang, Sang-Youp; Kim, Soo-Kil;Ahn, Dong-June;Lim, Tae-Hoon;Ha, Heung-Yong
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.293-299
    • /
    • 2007
  • Direct coating of catalyst layer on the $Nafion^{(R)}$ membrane has been optimized in the process of fabrication of membrane electrode assembly (MEA) to enhance the performance of direct methanol fuel cell (DMFC). In this method, the contact resistance at the interface of the catalyst layer and the membrane was found to be low. The effect of catalyst loading, thickness of membrane and the gas diffusion layer (GDL) with or without the presence of micro-porous layer (MPL) on the performance of the MEA was also investigated. The MEA fabricated by the above-mentioned method exhibited a performance of $147\;mW/cm^2$ and $100\;mW/cm^2$ at $80^{\circ}C$ and $60^{\circ}C$, respectively, with the catalysts loading of $4\;mg/cm^2$.

  • PDF

Application of Pt/C (60 wt.%) on electrode catalyst layer of direct methanol fuel cell (백금담지 촉매의 직접메탄올 연료전지 환원전극 적용)

  • Cho, Yong-Hun;Cho, Yoon-Hwan;Park, Hyun-Seo;Jung, Nam-Gee;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.188-190
    • /
    • 2007
  • The MEA with the catalyst layer containing PtRu black and 60 wt. %Pt/C as their anode and cathode catalysts. For find to effect of carbon support, the MEA with platinum black for cathode catalyst was fabricated. The performance of the MEA with the catalyst layer containing (PtRu black:60 wt.% Pt/C) as their anode and cathode catalyst has shown competitively higher value than the performance of the MEA with the catalyst layer containing (PtRu black:Pt black) as their anode and cathode catalyst.

  • PDF

The Characteristic of Prepared Electrode Catalyst and MEA using CNF and CNT (CNT 및 CNF를 이용하여 제조된 전극 촉매 및 막 전극 접합체의 특성)

  • 임재욱;최대규;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • The performance of fuel cell electrode depends on the characteristics of the catalyst support material. This paper deals with the use of CNF(carbon nanofibre) and CNT(carbon nanotube) as platinum catalyst support. The CNF and CNT were synthesized with catalyst treated by mechanochemical process and were prepared by chemical vapor deposition (CVD) method. The platinum supported on CNF and CNT for polymer electrolyte membrane fuel cell (PEMFC) application. In result, the best I-V characteristic was verified by the prepared MEA(membrane electrode assembly) from twisted CNF that had a diameter of 65 nm.

  • PDF

A Study on the Design and Efficiency of Membrane-Electrolyte Assembly in PEFC (PEFC 막-전극 접합체의 설계 및 효율에 관한 연구)

  • Kim H. G.;Kim Y. S.;Kim H. Y.;Yang Y. M.;Nah S. C.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.180-184
    • /
    • 2005
  • An experimental study is performed to evaluate the performance and the efficiency by humidifying MEA and by making the double-tied catalyst layers in a fuel cell system which is taken into account the physical and thermal concept. An electrical output produced by PEFC(polymer Electrolyte Fuel Cell) is measured to assess the performance of the stack and the efficiency is also evaluated according to the different situation in which is placed with and without the humidification of MEA (Membrane Electrolyte Assembly). Subsequently, It is found that the measured values of stack voltage and current are influenced by the stack temperature, humidification, and the double-tied catalyst layers which gives more enhanced values to apply for electric units.

  • PDF

Position-Dependent Cathode Degradation of Large Scale Membrane Electrode Assembly for Direct Methanol Fuel Cell (직접 메탄올 연료전지용 대면적 막-전극 접합체 공기극의 위치별 열화 현상)

  • Kim, Soo-Kil;Lee, Eun-Sook;Kim, Yi-Young;Kim, Jang-Mi;Joh, Han-Ik;Ha, Heung-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • With respect to the durability of large scale ($150cm^2$) membrane electrode assembly (MEA) of direct methanol fuel cell (DMFC), degradation phenomena at cathode is monitored and analyzed according to the position on the cathode surface. After constant current mode operation of large scale MEA for 500 hr, the MEA is divided into three parts along the cathode channel; (close to) inlet, middle, and (close to) outlet. The performance of each MEA is tested and it is revealed that the MEA from the cathode outlet of large MEA shows the worst performance. This is due to the catalyst degradation and GDL delamination caused by flooding at cathode outlet of large MEA during the 500 hr operation. Particularly on the catalyst degradation, the loss of electrochemically active surface area (ECSA) of catalyst gets worse along the cathode channel from inlet to outlet, of which the reason is believed to be loss of catalysts by dissolution and migration rather than their agglomeration. The extent of loss in the performance and catalyst degradation has strong relation to the cathode flooding and it is required to develop proper water management techniques and separator channel design to control the flooding.

Performance and Durability of PEMFC MEAs Fabricated by Various Methods (PEMFC MEA 제조 방법에 따른 성능 및 내구성)

  • Jeong, Jaehyeun;Song, Myunghyun;Chung, Hoibum;Na, Ilchai;Lee, Junghoon;Lee, Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.558-563
    • /
    • 2014
  • To study the effects of fabrication methods on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs), membrane-electrode assemblies (MEAs) were fabricated using a Dr blade method, a spray method, screen print method and screen print + spray method. The performance of single cells assembled with the prepared MEAs were initially measured and compared. Electrode accelerated stress testing (AST) involving a potentiostatic step-wave with 10 s at 0.6 V followed by 30 s at 0.9 V was applied to test durability of MEAs. Before and after 6,000cycles of the AST, I-V curves, impedance spectra, cyclic voltammograms, linear sweep voltammetry (LSV) and transmission electron microscope (TEM) were measured. Under the operating conditions, the Dr Blde MEA exhibited the highest initial performance. After electrode accelerated stress testing, screen print + spray MEA showed lowest degradation rate.

Preparation and Performance Evaluation of Gas Diffusion Layer Made of Carbon Compounds/Polymer Binder Composites (탄소화합물/Polymer Binder 복합체를 이용한 기체확산층 제조 및 성능 평가)

  • Lee, J.J.;Choi, Bum-Choul;Park, Y.K.;Lee, Jae-Young;Lee, Hong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.92.2-92.2
    • /
    • 2011
  • 고분자전해질 연료전지 (PEMFC)의 가격 결정 요인 중 막 전극 접합체 (MEA)가 차지하는 비중은 약 45%정도이며, 이것을 구성하는 주요 부품인 기체 확산층 (GDL)은 carbon paper나 carbon cloth 형태가 사용되고 있다. 그렇지만 GDL을 제조하는 공정은 매우 복잡하고, 그 가격이 너무 높은 단점이 있다. 본 연구에서는 카본블랙, 흑연 등의 탄소화합물과 polymer binder를 이용하여 단순화된 공정으로 GDL을 제조하였다. 또한, GDL의 물리적 특성이 전극 성능에 미치는 영향을 분석하기 위하여 표면 morphology, 접촉각 및 표면에너지, 전기전도도, 기체투과도, porosity, pore distrivution 등을 측정하였고, 각각의 GDL 표면에 동량의 Pt 촉매를 도포하여 MEA를 제작한 후 그 성능을 평가하였다.

  • PDF