• Title/Summary/Keyword: 막구조물

Search Result 49, Processing Time 0.02 seconds

A Study on the Shape Analysis of Membrane Structures Using Line Elements (선재 요소를 이용한 막 구조물의 형상해석에 관한 연구)

  • Kim, Seung-Deog;Lee, Shin-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.45-60
    • /
    • 2010
  • Nonlinear problems for membrane structures are very sensitive in convergence procedure in nonlinear iterations. Therefore many researchers have suggested a lot of ideas in published papers. In this study, authors are trying to get easier solution for taking membrane shape by initial stresses from substitution of the membrane to line elements. To obtain nonlinear stiffness, the nonlinear finite element method is used for both membrane and cable elements, and only geometric nonlinear terms are taken for shape analysis. By some examined models, we can find that the substituted models show better results to get, initial shape in which the concentrating phenomenon is removed at edge parts.

  • PDF

Review of Membrane Tension Maintenance System for Membrane Structures through Membrane Tension Measurement (막장력 측정을 통한 막구조물의 장력 유지관리 시스템 검토)

  • Jin, Sang-Wook;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • Membrane structure is a system that is stabilized by maintaining a tensile state of the membrane material that originally cannot resist the bending or pressure. Also, it is a system that allows the whole membrane structure to bear external loads caused by wind or precipitation such as snow, rain and etc. Tension relaxation phenomenon can transpire to the tension that is introduced to the fabric over time, due to the innate characteristics of the membrane material. Thus, it is important to accurately understand the size of the membrane tension after the completion of the structures, for maintenance and management purposes. The authors have proposed the principle of theoretically and indirectly measuring the tension by vibrating the membrane surface with sound waves exposures against the surface, which is compartmentalized by a rectangular boundary, and by measuring the natural frequency of the membrane surface that selectively resonates. The authors of this paper measured the tension of preexisting membrane structure for its maintenance by using the developed portable measurement equipment. Through analyzing the measurement data, the authors review the points that should be improved and the technical method for the new maintenance system of membrane tension.

A Study on Estimate for Error and Convergence of Membrane Structures According to the Nonlinear Form-finding Techniques (비선형 형상 탐색 기법에 따른 막구조물의 오차와 수렴성 평가에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Jeong, Eul-Seok;Jeon, Jin-Hyung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.57-66
    • /
    • 2007
  • The membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and happen large deformation phenomenon. Therefore, in this paper, we investigate the convergence of solution and the speed according to the control variables and the method of shape analysis.

  • PDF

Properties of Silicon Coated Fabric for Membrane Treated by Low Temperature Plasma (저온플라즈마 처리에 의한 실리콘코팅 막구조 원단의 특성변화)

  • Park, Beob;Lee, Jang-Hun;Koo, Kang
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.60-60
    • /
    • 2011
  • 막구조는 근래에 와서 대공간 구조 및 지붕구조에 가장 보편적으로 사용되는 경량 인장 구조물로 각광받고 있다. 구조용 막재는 풍하중 및 설하중에 충분히 감당할 수 있도록 강도와 내구성을 가지고 있어야 한다. 일반적으로 막구조 재는 PVC코팅 폴리에스터막, 실리콘코팅 유리섬유막, PTFE코팅 유리섬유막이 있다. 제직되는 원단의 크기가 한정되어 있기 때문에 재단 후 접착하여 제작한다. 이 때문에 이음부분이 나 재단부분에 코팅으로 인한 접착이 어려워 고온고압으로 접착을 한다. 이 연구에서는 실리콘코팅 유리섬유막의 접착시 어려움을 보완하기 위해 저온 Plasma를 이용한 처리법으로 방전에 의해 Plasma를 발생시켜 50w, 100w 출력으로 10분, 20분간 처리하여 그 결과를 접촉각과 SEM 관찰을 통해 표면처리를 관찰하였다. Plasma 처리로 인해 실리콘 표면층에 균열이 발생하고 표면이 갈라짐을 확인할 수 있었다. 접촉각측정 결과 Plasma 출력과 시간의 증가함에 따라 접촉각은 감소하였다. 실리콘코팅 원단에 저온 Plasma 처리한 후 표면 특성을 분석하고 원단을 접착을 시켜 박리 강도를 측정함으로써 막구조 원단의 접착력 향상에 대한 연구를 진행하였다. KS K 0533 접착포의 박리 강도 시험방법으로 실리콘코팅 원단의 박리 강도를 측정한 결과 플라즈마 처리 원단이 플라즈마 미처리 원단보다 박리 강도가 향상된 것을 확인할 수 있었다. 저온 Plasma 처리 시간이 증가할수록 표면의 젖음성을 향상시켜 접촉각을 낮추었다. 이는 곧 표면에너지의 증가를 뜻하는 것으로 접착력을 증가시켜 실리콘코팅 원단의 접착성을 시킴으로써 강한 강도와 내구성을 갖춘 막구조물의 개발에 기대되고 있다.

  • PDF

Membrane Structural Design and Construction by Using Glued Laminated Timber (집성재를 이용한 막구조물의 시공 및 설계)

  • Hwang, Bu-Jin;Ko, Kwang-Woong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.49-52
    • /
    • 2008
  • Structural Wood is developed by purpose to make efficient use of wood resources. The biggest advantage of structural wood is stable as strength is high than wood product that is used by structure in existing. Order manufacture according to design details is available. It Is used to main structure elements to large spatial structure. Structure wood kind utilizes Glulam, prefabricated wood I-joists and laminated veneer lumber(LVL) and so on. Structural Design and construction of Open-air Stage Roof Structure is described in the presented paper. Architectural roof materials is used to PVF/PFLT membrane. Column and diagonal members is used to steel members(SS400), and Cantilever beam is used to Glulam assembled with different Grade laminations(10S-28B).

  • PDF

Flame Resistance Performance of Glass Fiber and Polyester Fiber Architectural Membranes (건축용 유리섬유 및 폴리에스테르섬유 막재의 난연특성)

  • Kim, JiHyeon;Song, Hun
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • Membrane structures can be used to create diverse lightweight structural forms using ductile membranes made of coated fabric. Using membrane structures, it is possible to construct large covered spaces relatively quickly and economically, and hence, they are being applied within various applications. The structures are light-weight, transparent, flexible in their application, economical and easy to maintain, and as such, their usage is being expanded. However, despite their prevalence, the standard for membrane material performance in terms of fire safety is still inadequate, and the development of membrane materials with excellent flame resistance performance is being demanded. This study determined flame resistance performance of architectural membranes, including PTFE, PVDF, PVF and ETFE film membranes, through flammability testing and incombustibility testing.

Ultrastructural Changes of Epididymal Epitheliurn during Sexual Maturation in Mouse (성적 성숙에 따른 생쥐 부정소 상피세포의 미세구조 변화)

  • 윤현수;최규완;김종흡;김문규
    • The Korean Journal of Zoology
    • /
    • v.33 no.1
    • /
    • pp.78-93
    • /
    • 1990
  • The ultrastructure of epididymal epithelium of 10, 20, 35 and 80 day-old mouse was observed to study the differentiation and function of the epithelial cells in connection with the absorption and secretion during sexual matruation. The differentiation of epididymis was divided into three phases of, 1) undiflerentiated phase until the day 20 after birth, 2) growing and differentiating phase between the day 20 and 35, and 3) maturating phase up to the adult. Each phase was closely related with the lumination of seminiferous tubule and the influx of spermatozoa within testicular fluid from testis. In adult, the ultrastructural features appeared an absorptive function in the principal cells of proximal caput epididymis, and a strong activity of protein synthesis and secretion in distal caput, corpus and cauda epididymis. Clear cells were predominantly located in corpus and cauda epidiymis, and plenty of absorption vesicles including membranous particles assumed to be the cellular residues from spermatozoa were observed at apical region. Therefore, the distribution of various cell types of epithelium and the ultrastructure even in the same type of epithelial cell, were different according to the epididymal regions.

  • PDF

Geodesic Shape Finding Algorithm for the Pattern Generation of Tension Membrane Structures (막구조물의 재단도를 위한 측지선 형상해석 알고리즘)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • Patterning with a geodesic line is essential for economical or efficient usage of membrane materialsin fabric tension membrane structural engineering and analysis. The numerical algorithm to determine the geodesic line for membrane structures is generally classified into two. The first algorithm finds a non-linear shape using a fictitious geodesic element with an initial pre-stress, and the other algorithm is the geodesic line cutting or searching algorithm for arbitrarily curved 3D surface shapes. These two algorithms are still being used only for the three-node plane stress membrane element, and not for the four-node element. The lack of a numerical algorithm for geodesic lines with four-node membrane elements is the main reason for the infrequent use of the four-node membrane element in membrane structural engineering and design. In this paper, a modified numerical algorithm is proposed for the generation of a geodesic line that can be applied to three- or four-node elements at the same time. The explicit non-linear static Dynamic Relaxation Method (DRM) was applied to the non-linear geodesic shape-finding analysis by introducing the fictitiously tensioned 'strings' along the desired seams with the three- or four-node membrane element. The proposed algorithm was used for the numerical example for the non-linear geodesic shape-finding and patterning analysis to demonstrate the accuracy and efficiency, and thus, the potential, of the algorithm. The proposed geodesic shape-finding algorithm may improve the applicability of the four-node membrane element for membrane structural engineering and design analysis simultaneously in terms of the shape-finding analysis, the stress analysis, and the patterning analysis.

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.