• 제목/요약/키워드: 마코프 체인 몬테 카를로

검색결과 4건 처리시간 0.014초

약물동태학 모형에 대한 변분 베이즈 방법 (A variational Bayes method for pharmacokinetic model)

  • 박선;조성일;이우주
    • 응용통계연구
    • /
    • 제34권1호
    • /
    • pp.9-23
    • /
    • 2021
  • 본 논문에서는 평균장 방법(mean-field methods)을 기반으로 사후 분포(posterior distribution)를 근사하는 방법인 변분 베이즈 방법(variational Bayes methods)에 대해 소개한다. 특히, 모수들을 실수공간으로 변환 후의 결합 사후분포를 가우시안 분포(Gaussian distribution)들의 곱(product)으로 근사하는 방법인 자동 미분 변분 추론(automatic differentiation variational inference)방법에 대해 자세히 소개하고, 환자에게 약물을 투여한 후 시간에 따라 약물의 흐름을 파악하는 연구인 약물동태학 모형(pharmacokinetic models)에 적용한다. 소개된 변분 베이즈 방법을 이용하여 자료분석을 실시하고 마코프 체인 몬테 카를로(Markov chain Monte Carlo)방법을 기초로한 자료분석의 결과와 비교한다. 알고리즘의 구현은 Stan을 이용한다.

베이지안 추론을 이용한 전쟁 시뮬레이션과 예측 연구 (A Study on the War Simulation and Prediction Using Bayesian Inference)

  • 이승용;유병주;윤상윤;방상호;정재웅
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.77-86
    • /
    • 2021
  • 시간적인 차이를 두고 획득한 이질적인 과거 전쟁 결과 데이터를 하나의 모형으로 구축하는 방법으로 베이지안 추론에 의한 전쟁시뮬레이션 모형을 구축하는 방법을 제안하였다. 과거의 전쟁 결과를 분석하여 미래에 있을 수 있는 전쟁을 예측하는 방법으로 선형회귀모형을 적용하는 방법을 고려할 수 있다. 그러나 역사적으로 시대가 서로 달라 전장 환경의 변화가 반영된 이질적인 두 유형의 자료들이라면 모형의 가정사항 위반으로 하나의 선형회귀모형으로 적합하는 것은 적절하지 않다. 이러한 문제를 해결하기 위해 앞선 시대에 있는 자료를 비정보적 사전분포로 가정하여 사후분포를 구하고 이를 다음 시대에 얻은 자료를 분석하기 위한 사전분포로 활용하여 최종 사후분포를 추론하는 베이지안 추론 방법을 제안하였다. 베이지안 추론 방법의 또 다른 장점은 마코프 체인 몬테 카를로 방법으로 샘플링한 결과를 이용하여 불확실성이 반영된 사후분포나 사후예측분포를 추론할 수 있다는 점이다. 이렇게 했을 때 고전적인 선형회귀모형으로 분석하는 것보다 다양한 정보를 활용할 수 있을 뿐만 아니라 향후 추가적으로 획득되는 자료도 모형에 반영하여 모형을 계속 업데이트시킬 수 있다는 장점이 있다.

국면전환 임계 자기회귀 분석을 위한 베이지안 방법 비교연구 (A Comparison Study of Bayesian Methods for a Threshold Autoregressive Model with Regime-Switching)

  • 노태영;조성일;이령화
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1049-1068
    • /
    • 2014
  • 자기회귀 모형(autoregressive model)은 일변량(univaraite) 시계열자료의 분석에서 널리 사용되는 방법 중 하나이다. 그러나 이 방법은 자료에 일정한 추세가 있다고 가정하기 때문에 자료에 분절(structural break)이 존재할 때 적절하지 않을 수 있다. 이러한 문제점을 해결하기 위한 방법으로 국면전환(regime-switching) 모형인 임계자기회귀 모형(threshold autoregressive model)이 제안되었는데 최근 지연 모수(delay parameter)을 포함한 이 국면전환(two regime-switching) 모형으로 확장되어 많은 연구가 활발히 진행되고 있다. 본 논문에서는 이 국면전환 임계자기회귀 모형을 베이지안(Bayesian) 관점에서 살펴본다. 베이지안 분석을 위해 모수적 임계자기 회귀 모형 뿐만 아니라 디리슐레 과정(Dirichlet Process) 사전분포를 이용하는 비모수적 임계자기 회귀 모형을 고려하도록 한다. 두 가지 베이지안 임계자기 회귀 모형을 바탕으로 사후분포를 유도하고 마코프 체인 몬테 카를로(Markov chain Monte Carlo) 방법을 통해 사후추론을 실시한다. 모형 간의 성능을 비교하기 위해 모의실험을 통한 자료 분석을 고려하고, 더 나아가 한국과 미국의 국내 총생산(Gross Domestic Product)에 대한 실증적 자료 분석을 실시한다.

종이 헬리콥터 낙하해석모델의 통계적 교정 및 검증 (Statistical Calibration and Validation of Mathematical Model to Predict Motion of Paper Helicopter)

  • 김길영;유성범;김동영;김동성;최주호
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.751-758
    • /
    • 2015
  • 수학적 해석모델은 물리적 현상을 파악하고 실험비용을 절감하는데 활발하게 사용되지만 편의를 위한 단순화 또는 파라미터가 가지고 있는 불확실성에 의해 해석모델에 의한 예측결과는 실제현상과 차이가 발생한다. 본 연구에서는 이러한 문제에 대해 통계적 기법을 이용하여 해석모델의 불확실성을 반영한 교정 및 검증 방법을 종이 헬리콥터를 통해 제시한다. 먼저, 같은 제원의 세 가지 종이 헬리콥터로 실시한 실험 데이터를 각 그룹으로 형성하여 두 가지 낙하해석모델에서 미지의 입력 파라미터인 항력계수를 교정하는데 사용했다. 그리고 확률분포로 예측된 낙하시간을 실험 데이터 분포와 비교하여 해석 모델을 검증하였다. 이 때, Markov Chain Monte Carlo 기법을 활용하여 항력계수의 불확실성을 정량화하였다. 또한 종이 헬리콥터의 그룹별 데이터에 대해 분산분석(Analysis of Variance)를 이용하여 제작오차와 실험오차의 관계를 비교하였고, 각 그룹이 모두 동일한 대상으로 간주해도 됨을 증명하였다.