• Title/Summary/Keyword: 마코프 체인 모형

Search Result 40, Processing Time 0.03 seconds

A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior (랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용)

  • Kim, Yeon Kyoung;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.287-301
    • /
    • 2018
  • It is common to encounter count data with excess zeros in various research fields such as the social sciences, natural sciences, medical science or engineering. Such count data have been explained mainly by zero-inflated Poisson model and extended models. Zero-inflated count data are also often correlated or clustered, in which random effects should be taken into account in the model. Frequentist approaches have been commonly used to fit such data. However, a Bayesian approach has advantages of prior information, avoidance of asymptotic approximations and practical estimation of the functions of parameters. We consider a Bayesian zero-inflated Poisson regression model with random effects for correlated zero-inflated count data. We conducted simulation studies to check the performance of the proposed model. We also applied the proposed model to smoking behavior data from the Regional Health Survey (2015) of the Korea Centers for disease control and prevention.

The extension of a continuous beliefs system and analyzing herd behavior in stock markets (연속신념시스템의 확장모형을 이용한 주식시장의 군집행동 분석)

  • Park, Beum-Jo
    • Economic Analysis
    • /
    • v.17 no.2
    • /
    • pp.27-55
    • /
    • 2011
  • Although many theoretical studies have tried to explain the volatility in financial markets using models of herd behavior, there have been few empirical studies on dynamic herding due to the technical difficulty of detecting herd behavior with time-series data. Thus, this paper theoretically extends a continuous beliefs system belonging to an agent based economic model by introducing a term representing agents'mutual dependence into each agent's utility function and derives a SV(stochastic volatility)-type econometric model. From this model the time-varying herding parameters are efficiently estimated by a Markov chain Monte Carlo method. Using monthly data of KOSPI and DOW, this paper provides some empirical evidences for stronger herding in the Korean stock market than in the U.S. stock market, and further stronger herding after the global financial crisis than before it. More interesting finding is that time-varying herd behavior has weak autocorrelation and the global financial crisis may increase its volatility significantly.

An Analysis on the Optimal Level of the Maintenance Float Using Absorbing Markov Chain (흡수 마코프 체인을 활용한 적정 M/F 재고 수준에 관한 연구)

  • Kim, Yong;Yoon, Bong-Kyoo
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • The military is an organization where reliability and availability take much more importance than in any other organization. And, in line with a recent trend of putting emphasis on 'system readiness', not only functions but also availability of a weapon system has become one of achievement targets. In this regard, the military keeps spares for important facility and equipment, which is called as Maintenance Float (M/F), in order to enhance reliability and availability in case of an unforeseen event. The military has calculated yearly M/F requirements based on the number of equipment and utilization rate. However, this method of calculation has failed to meet the intended targets of reliability and availability due to lack of consideration on the characteristics of equipment malfunctions and maintenance unit's capability. In this research, we present an analysis model that can be used to determine an optimal M/F inventory level based on queuing and absorbed Markov chain theories. And, we applied the new analysis model to come out with an optimal volume of K-1 tank M/F for the OO division, which serves as counterattack military unit. In our view, this research is valuable because, while using more tractable methodology compared to previous research, we present a new analysis model that can describe decision making process on M/F level more satisfactorily.

Simulation of the Phase-Type Distribution Based on the Minimal Laplace Transform (최소 표현 라플라스 변환에 기초한 단계형 확률변수의 시뮬레이션에 관한 연구)

  • Sunkyo Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • The phase-type, PH, distribution is defined as the time to absorption into a terminal state in a continuous-time Markov chain. As the PH distribution includes family of exponential distributions, it has been widely used in stochastic models. Since the PH distribution is represented and generated by an initial probability vector and a generator matrix which is called the Markovian representation, we need to find a vector and a matrix that are consistent with given set of moments if we want simulate a PH distribution. In this paper, we propose an approach to simulate a PH distribution based on distribution function which can be obtained directly from moments. For the simulation of PH distribution of order 2, closed-form formula and streamlined procedures are given based on the Jordan decomposition and the minimal Laplace transform which is computationally more efficient than the moment matching methods for the Markovian representation. Our approach can be used more effectively than the Markovian representation in generating higher order PH distribution in queueing network simulation.

Stock investment with a redistribution model of the history-dependent Parrondo game (과거의존 파론도 게임의 재분배 모형을 이용한 주식 투자)

  • Jin, Geonjoo;Lee, Jiyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.781-790
    • /
    • 2015
  • The Parrondo paradox is the counter-intuitive phenomenon: when we combine two losing games we can win the game or when we combine two winning games we can lose the game. In this paper, we assume that an investor adopts the rule of the history-dependent Parrondo game for investment in the stock market. Using the KRX (Korea Exchange) data from 2012 to 2014, we found the Parrondo paradox in the stock trading: the redistribution of profits among accounts can turn the decrease of the expected cumulative profit into the increase of the expected cumulative profit. We also found that the opposite case, namely the reverse Parrondo effect, can happen in the stock trading.

Analysis of Periodicity of Meteorological Measures and Their Effects on Precipitation Observed with Surface Meteorological Instruments at Eight Southwestern Areas, Korea during 2004KOEP (기상인자의 주기성 분석 및 일반화 선형모형을 이용한 강수영향분석: 2004KEOP의 한반도 남서지방 8개 지역 기상관측자료사용)

  • Kim Hea-Jung;Yum Joonkeun;Lee Yung-Seop;Kim Young-Ah;Chung Hyo-Sang;Cho Chun-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.281-296
    • /
    • 2005
  • This article summarizes our research on estimation of area-specific and time-adjusted rainfall rates during 2004KEOP (Korea enhanced observation period: June 1, $2004{\sim}$ August 31, 2004). The rainfall rate is defined as the proportion of rainfall days per week and areas are consisting of Haenam, Yeosu, Janghung, Heuksando, Gwangju, Mokpo, Jindo, and Wando. Our objectives are to analyze periodicity in area-specific precipitation and the meteorological measures and investigate the relationships between the geographic pattern of the rainfall rates and the corresponding pattern in potential explanatory covariates such as temperature, wind, wind direction, pressure, and humidity. A generalized linear model is introduced to implement the objectives and the patterns are estimated by considering a set of rainfall rates produced using samples from the posterior distribution of the population rainfall rates.

Predicting Financial Success of a Movie Using Bayesian Choice Model (베이지안 선택 모형을 이용한 영화흥행 예측)

  • Lee Gyeong-Jae;Jang U-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1851-1856
    • /
    • 2006
  • 영화는 대표적인 경험재로 가치판단이 주관적이고 제품 수명주기가 매우 짧아 예측의 불확실성이 높기 때문에 이를 정량적인 방법으로 모형화하기는 쉽지 않다. 이러한 한계점에도 불구하고 한 영화의 상업적 성공을 예측하는 것은 영화 제작자나 배급사, 극장 등 모든 주체에게 수익과 직결되는 중요한 문제이기 때문에 지금까지 다양한 통계 모형이 제시되었다. 그러나 이들 모형의 대부분은 영화흥행에는 영향을 미치나 측정할 수 없는 효과를 반영하지 못한다거나, 추정 모수의 효과가 모든 영화에 대해서 같다는 동일성 가정으로 인해 영화간 이질성을 고려하지 못하고 있다. 따라서, 본 연구에서는 추정 모수의 사전분포를 모호사전분포로 정의함으로써 변수들의 불확실성을 반영할 수 있고, 영화간 이질성을 고려할 수 있는 베이지안 선택 모형을 제안하였다. 모수의 사후분포는 마코프체인 몬테카를로 기법인 깁스 샘플러를 이용하여 추정하였다. 또한, 감독, 배우, 장르 등의 영화 별 속성 변수뿐만 아니라, 입소문에 의한 영화관람 결정 등의 구전효과와 경쟁영화의 개봉으로 인한 효과를 반영할 수 있는 변수를 추가하여 모형의 정확성을 높였다. 2005년과 2006년 상반기에 상영된 영화를 바탕으로 모형을 구축하고 인공신경망 모형과 비교한 결과, 전체적인 예측 정확도에서는 인공신경망 모형과 비슷한 결과를 보이나 상업적으로 성공한 영화를 예측하는 데에는 베이지안 선택모형이 보다 더 우수한 것으로 나타났다. 또한, 개봉 주의 경쟁심화 정도 및 개봉 첫 주의 스크린 수 등이 영화 흥행에 가장 중요한 변수로 나타났으며, 영화 개봉 전 그 영화에 대한 기대치가 높을수록 흥행 성적 또한 좋음을 알 수 있었다. 배우의 힘 및 계절성, 영화 평점 등은 이질성을 고려하지 않은 전체수준에서는 통계적으로 유의하지 않은 것으로 나타났으나, 그룹 간 이질성을 반영한 모형에서는 어느 정도 흥행한 영화를 만들기 위해서는 고려되어야 할 요소로 나타났다.렇지 않을 경우 적절한 벤치마킹 대상을 도출할 때까지 추가적인 분석과정을 반복한다. 제안한 방법을 통하여 조직은 기술적 생산 가능성 외에도 다양한 조직 운영 관점에서 적절한 벤치마킹 대상을 선정할 수 있으며, 이에 따른 목표를 수립할 수 있을 것으로 기대한다. 또한 더 나아가 global efficiency 관점에서 효율적 조직이 되기 위하여 단계적인 벤치마킹 대상 선정과 이에 따른 목표를 수립하는데도 유용하리라 판단된다.$1.20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의 술 후 폐환기능에 영향을 미치는 요인은 성별로 나타났다. 이에 따른 폐환기능의 차이를 보면, 실험군의 술 후 노력성 폐활량이 48시간에 남자($1.78{\pm}0.61L$)가 여자($1.27{\pm}0.45L$)보다 더 높게 나타났으며 (t=2.170, P=0.042), 72시간에도 역시 남자($2.16{\pm}0.56L$)가 여자($1.50{\pm}0.47L$)보다 더

  • PDF

Lifetime Distribution Model for a k-out-of-n System with Heterogeneous Components via a Structured Markov Chain (구조화 마코프체인을 이용한 이종 구성품을 갖는 k-out-of-n 시스템의 수명분포 모형)

  • Kim, Heungseob
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.332-342
    • /
    • 2017
  • Purpose: In this study, the lifetime distribution of a k-out-of-n system with heterogeneous components is suggested as Markov model, and the time-to-failure (TTF) distribution of each component is considered as phase-type distribution (PHD). Furthermore, based on the model, a redundancy allocation problem with a mix of components (RAPMC) is proposed. Methods: The lifetime distribution model for the system is formulated by the structured Markov chain. From the model, the various information on the system lifetime can be ascertained by the matrix-analytic (or-geometric) method. Conclusion: By the generalization of TTF distribution (PHD) and the consideration of heterogeneous components, the lifetime distribution model can delineate many real systems and be exploited for developing system operation policies such as preventive maintenance, warranty. Moreover, the effectiveness of the proposed RAPMC is verified by numerical experiments. That is, under the equivalent design conditions, it presented a system with higher reliability than RAP without component mixing (RAPCM).

Stochastic Simple Hydrologic Partitioning Model Associated with Markov Chain Monte Carlo and Ensemble Kalman Filter (마코프 체인 몬테카를로 및 앙상블 칼만필터와 연계된 추계학적 단순 수문분할모형)

  • Choi, Jeonghyeon;Lee, Okjeong;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.353-363
    • /
    • 2020
  • Hydrologic models can be classified into two types: those for understanding physical processes and those for predicting hydrologic quantities. This study deals with how to use the model to predict today's stream flow based on the system's knowledge of yesterday's state and the model parameters. In this regard, for the model to generate accurate predictions, the uncertainty of the parameters and appropriate estimates of the state variables are required. In this study, a relatively simple hydrologic partitioning model is proposed that can explicitly implement the hydrologic partitioning process, and the posterior distribution of the parameters of the proposed model is estimated using the Markov chain Monte Carlo approach. Further, the application method of the ensemble Kalman filter is proposed for updating the normalized soil moisture, which is the state variable of the model, by linking the information on the posterior distribution of the parameters and by assimilating the observed steam flow data. The stochastically and recursively estimated stream flows using the data assimilation technique revealed better representation of the observed data than the stream flows predicted using the deterministic model. Therefore, the ensemble Kalman filter in conjunction with the Markov chain Monte Carlo approach could be a reliable and effective method for forecasting daily stream flow, and it could also be a suitable method for routinely updating and monitoring the watershed-averaged soil moisture.

A Sparse Data Preprocessing Using Support Vector Regression (Support Vector Regression을 이용한 희소 데이터의 전처리)

  • Jun, Sung-Hae;Park, Jung-Eun;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.789-792
    • /
    • 2004
  • In various fields as web mining, bioinformatics, statistical data analysis, and so forth, very diversely missing values are found. These values make training data to be sparse. Largely, the missing values are replaced by predicted values using mean and mode. We can used the advanced missing value imputation methods as conditional mean, tree method, and Markov Chain Monte Carlo algorithm. But general imputation models have the property that their predictive accuracy is decreased according to increase the ratio of missing in training data. Moreover the number of available imputations is limited by increasing missing ratio. To settle this problem, we proposed statistical learning theory to preprocess for missing values. Our statistical learning theory is the support vector regression by Vapnik. The proposed method can be applied to sparsely training data. We verified the performance of our model using the data sets from UCI machine learning repository.