DOI QR코드

DOI QR Code

Stock investment with a redistribution model of the history-dependent Parrondo game

과거의존 파론도 게임의 재분배 모형을 이용한 주식 투자

  • Jin, Geonjoo (Department of Statistics, Yeungnam University) ;
  • Lee, Jiyeon (Department of Statistics, Yeungnam University)
  • Received : 2015.06.04
  • Accepted : 2015.07.13
  • Published : 2015.07.31

Abstract

The Parrondo paradox is the counter-intuitive phenomenon: when we combine two losing games we can win the game or when we combine two winning games we can lose the game. In this paper, we assume that an investor adopts the rule of the history-dependent Parrondo game for investment in the stock market. Using the KRX (Korea Exchange) data from 2012 to 2014, we found the Parrondo paradox in the stock trading: the redistribution of profits among accounts can turn the decrease of the expected cumulative profit into the increase of the expected cumulative profit. We also found that the opposite case, namely the reverse Parrondo effect, can happen in the stock trading.

파론도 역설은 두 개의 지는 게임이 결합하여 이기게 되거나, 두 개의 이기는 게임이 결합하여 지게 되는 역설적인 현상을 말한다. 본 논문에서는 한 투자가가 여러 개의 주식 계좌를 과거의 투자 결과에 의해 투자 종목이 결정되는 과거의존 파론도 게임의 규칙에 따라 관리하는 경우를 고려한다. 주식의 매매만으로는 전체 계좌의 평균 누적 수익금이 점차 감소하지만 주식 투자를 진행하는 중 계좌간에 일정한 금액을 재분배하면 전체 계좌의 평균 누적 수익금이 증가하는 파론도 현상이 존재할 수 있음을 2012년부터 2014년까지의 3년간의 한국거래소의 주식 데이터를 이용하여 확인한다. 반대로 계좌 간의 금액 재분배로 인해 점차 증가하는 평균 누적 수익금이 오히려 감소하는 역 파론도 현상이 발생할 수 있음도 함께 확인한다.

Keywords

References

  1. Cho, D. and Lee, J. (2012a). Parrondo paradox and stock investment. Korean Journal of Applied Statistics, 25, 543-552. https://doi.org/10.5351/KJAS.2012.25.4.543
  2. Cho, D. and Lee, J. (2012b). Spatially dependent Parrondo games and stock investments. Journal of the Korean Data & Information Science Society, 23, 867-880. https://doi.org/10.7465/jkdi.2012.23.5.867
  3. Ethier, S. N. and Lee, J. (2009). Limit theorems for Parrondo's paradox. Electronic Journal of Probability, 14, 1827-1862. https://doi.org/10.1214/EJP.v14-684
  4. Ethier, S. N. and Lee, J. (2012). Parrondo's paradox via redistribution of wealth. Electronic Journal of Probability, 17, 1-21.
  5. Harmer, G. P. and Abbott, D. (2002). A review of Parrondo's paradox. Fluctuation and Noise Letters, 2, R71-R107. https://doi.org/10.1142/S0219477502000701
  6. Jin, G. and Lee, J. (2015). A redistribution model of the history-dependent Parrondo game. Journal of the Korean Data & Information Science Society, 26, 77-87. https://doi.org/10.7465/jkdi.2015.26.1.77
  7. Lee, J. (2009). Optimal strategies for collective Parrondo games. Journal of the Korean Data & Information Science Society, 20, 973-982.
  8. Lee, J. (2011). Paradox in collective history-dependent Parrondo games. Journal of the Korean Data & Information Science Society, 22, 631-641.
  9. Parrondo, J. M. R. (1996). How to cheat a bad mathematician? In the Workshop of the EEC HC&M Network on Complexity and Chaos, ISI, Torino, Italy. Unpublished.
  10. Parrondo, J. M. R., Harmer, G. P. and Abbott, D. (2000). New paradoxical games based on Brownian ratchets. Physical Review Letters, 85, 5226-5229. https://doi.org/10.1103/PhysRevLett.85.5226
  11. Toral, R (2001). Cooperative Parrondo's games. Fluctuation and Noise Letters, 1, L7-L12. https://doi.org/10.1142/S021947750100007X
  12. Toral, R (2002). Capital redistribution brings wealth by Parrondo's paradox. Fluctuation and Noise Letters, 2, L305-L311. https://doi.org/10.1142/S0219477502000907

Cited by

  1. Parrondo effect in correlated random walks with general jumps vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1241
  2. A redistribution model for spatially dependent Parrondo games vol.27, pp.1, 2016, https://doi.org/10.7465/jkdi.2016.27.1.121