• Title/Summary/Keyword: 마찰

Search Result 5,601, Processing Time 0.03 seconds

A Study on the Pile Behaviour Adjacent to Tunnel Using Photo Imaging Process and Numerical Analysis (Photo Imaging Process 기법 및 수치해석을 이용한 터널주변 파일기초거동에 대한 연구)

  • Lee Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.87-102
    • /
    • 2005
  • In the congested urban areas, tunnelling close to existing structures or services often occurs due to the lack of surface space so that tunnelling-induced ground movements may cause a serious damage to the adjacent structures. This study focused on the two dimensional laboratory model pile-soil-tunnelling interaction tests using a close range photogrammetric technique. Testing equipments and procedures were Introduced, particularly features of aluminium rods regarded as the frictional granular material. The experimental result showed that the photo imaging process by the VMS and EngVis programs proved to be a useful tool in measuring the pile tip movements during the tunnelling. Consequently, the normalised pile tip movement data for the influence zones can be generated by the laboratory model tests using the Photogrammetric technique. This study presents influence zones associated with the normalized pile tip settlements due to tunnelling in the cohesionless material. The influence zones were Identified by both a laboratory model test and a numerical analysis. The normalized pile tip movements from the model test were in good agreement with the numerical analysis result. The influence zones proposed in this study could be used to decide the reasonable location of tunnel construction in the planning stage. However, the scale of model pile and model tunnel sizes must be carefully adjusted as real ones for practical application considering the ground conditions at a given site.

Analysis of the Bearing Capacity of Drilled Shafts Compared with Driven Piles (항타말뚝과 비교한 현장타설말뚝의 지지력분석)

  • Lee, Seong-Jun;Jeong, Sang-Seom;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.75-88
    • /
    • 1997
  • In this study an iterative procedure for the analysis of drilled shafts was proposed on the basis of the load transfer mechanism. Special attention was given to the estimation of bearing capacity of drilled shafts which was compared with driven piles, and then with the results of pile load test. The load displacement at the pile head was calculated by load than sfer curves (t -z curves, q-z curves) by using Vljayvergiya, Castelli and hi -linear models. Bab ed on the analytical results, it is found that the behavior of drilled shafts is different from that of driven piles the smaller the skin friction mobilized at the pile-boil interface, the smaller the development of the bearing capacity. Hence the greater pile head movement is required to mobilize the same mainitride of bearing capacity. This trend is more noticeable in sand than in clay. It is also found that as the length-todiameter ratios increase, the dirtference of ultimate bearing capacity between drilled shafts and driven piles is becoming lass ger in sand, but it is minor in clay.

  • PDF

Analysis of Load Sharing Ratio of Piled Raft Foundation by Field Measurement (현장 계측을 통한 말뚝지지 전면기초의 하중분담률 분석)

  • Jeong, Sang-Seom;Lee, Jun-Hwan;Park, Jong-Jeon;Roh, Yang-Hoon;Hong, Moon-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.41-52
    • /
    • 2017
  • In this study, field measurements were investigated to analyze the load sharing ratio and behavior of piled raft foundation. The field measurements were performed for about 300 days from the start of construction. The geometry of the raft is $3.1m{\times}3.1m$, and the pre-cast and pre-bored pile is 23 m in length and 0.508 m in diameter. Based on the field measurements, the load-settlement relationship of the piled raft foundation was obtained, and the load sharing ratio of the pile was converged to 70% at ultimate loading condition. The load sharing ratio of the pile increased as the settlement increased, and this is because the surface friction of the weathered soil, which is at the lower ground, was significantly increased. Based on the results of the field measurements, load transfer curves were obtained and applied to a numerical analysis by using load transfer method.

Failure Examples Study Including with timing belt, Constant Velocity Boot and Weather strip on a Car (자동차의 타이밍벨트, 등속조인트 부트, 웨더 스트립에 관련된 고장사례 고찰)

  • Lee, Il Kwon;Lee, Jong Ho;Hwang, Han Sub;Yim, Ha Young;You, Chang Bae;Kim, Young Kyu;Kim, Choo Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • This paper is to study the examples for rubber damage and weaken reliability of timing belt, constant velocity joint boot and weather strip in vehicle. The first example, when the service man replaced the new timing-belt of rubber material, he assembled the belt that was weaken it's contact surface because of material transform. He knew the abnormally tearing failure by friction action between belt and sprocket. The second example, it certified the fact that the grease is leaked out boot protecting of constant velocity joint by split of rubber surface because of durability badness. The third example, the weather stripe took the minutely tearing because of damage produced the material transform by crack of chemistry change. It certified the production phenomenon of a tiny noise by coming with outside air because of overlapped the rubber of weather stripe when driving after closing the door. Therefore, the driver must always manage the rubber system part of vehicle.

Experimental Study of Friction Factors for Laminar, Transition, and Turbulent Flow Regimes in Helical Coil Tubes (헬리컬 코일 튜브에서의 층류, 천이, 난류 영역의 마찰계수에 대한 실험적 연구)

  • Park, Won Ki;Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Choi, Byung-Il
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The friction factors according to the flow regimes in helical coil tubes depend on the coil diameter, the tube diameter, and the coil pitch. In previous studies, correlations for the laminar flow regime in helical coil tubes have been proposed. However, studies on the transition flow regime and the turbulent flow regime are insufficient and further researches are necessary. In this study, characteristics of the friction factors for the laminar, transition and turbulent flow regimes in helical coil tubes were experimentally investigated. The helical coil tubes used in the experiments were made of copper. The curvature ratios of the helical coil tubes, which means the ratio of helical coil diameter to inner diameter of the helical coil tube are 24.5 and 90.9. Experiments were carried out in the range of $529{\leq}Re{\leq}39,406$ to observe the flows from the laminar to the turbulent regime. The friction factors were obtained by measuring the differential pressures according to the flow rates in the helical coil tubes while varying the curvature ratios of the helical coil tubes. Experimental data show that the friction factors for the helical coil tube with 24.5 in the curvature ratio of the helical coil tube were larger than those in the straight tube in all flow regimes. As the curvature ratio of the helical coil tube increases, the friction factor in turbulent flow regime tends to be equal to that of the straight tube. In addition, it was confirmed that the transition flow regimes in the helical coil tubes were much wider than those in the straight tube, also the critical Reynolds numbers were larger than those in the straight tube. The results obtained in this experimental study can be used as basic data for studies on the water hammer phenomenon in helical coil tubes.

The Evaluation of Bearing Resistance of Underreamed Ground Anchor through Realistic Model Experiments (실모형실험을 통한 지압형 앵커의 지압력 평가)

  • Min, Kyongnam;Lee, Jaewon;Lee, Junggwan;Lee, Dongwon;Jung, Chanmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.87-92
    • /
    • 2014
  • The Ground anchor is reinforcement to resist pull-out through ground that is used supports structure. The pull-out resistance of anchor is constructed by skin friction resistance from compression borehole wall in expanded wings and bearing pressure from the ground. Especially, underreamed ground anchor is reinforcement that adopts active reinforcement to prevent deformation of ground using bearing resistance generated reaming anchorage. This study is conducted to calculate bearing resistance of underreamed ground anchor. Realistic model tests were fulfilled to determine bearing resistance of anchor, and correlate results of tests to Uniaxial Compressive Strengths (UCS) of ground models that assumed weathered rock condition in 8 case. In a comprehensive series of the tests, the bearing resistances were measured by pull-out tests. The bearing resistances derived from tests have a linear correlation with UCS. We also suggest empirical equation between bearing resistance and UCS of rocks by single linear regression analyses. In test results of this study, the bearing resistances were evaluated approximately 13 times higher than UCS of the grounds, and it is qualitatively similar to numerical values of pull-out force derived from theory.

Numerical Study on the Variation of Slope Stability for the Embankment Formed by Unsaturated Dredging Soils during Rainfall (강우시 불포화 준설토로 형성된 제방의 사면안정성 변화에 대한 수치해석적 연구)

  • You, Seung-Kyong;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, the variation of wetting front and ground water level at the embankment constructed in the Saemangeum area were predicted considering rainfall duration times and the slope stability analysis of the embankment was carried out according to prediction results of wetting front and ground water level. The embankment was formed by dredging soils. A suction stress, a cohesion and a frictional angle of dreding soils measured by soil tests were applied to estimate the unsaturated soil properties. According to the analysis results of the wetting front and the ground water level for various rainfall duration time, the wetting front began to descend from the upper part of embankment at the beginning time of rainfall and after 1 hour of rainfall duration time. After that, the ground water level continued to ascend as the rainfall duration time was getting longer. After rainfall, the ground water level was distributed at a certain depth, and the ground water level was gradually descending as time goes by. According to the slope stability analysis of the embankment considering the variation of the wetting front and the ground water level, the safety factor of slope was rapidly reduced as the rainfall began to infiltrate into the ground, and the minimum safety factor of slope was estimated after 24 hours of rainfall duration time. Meanwhile, the safety factor of slope was increased with regaining the matric suction in the ground after rainfall.

Earthquake-Resistant Design of Cantilever Retaining-Walls with Sloped Base (기초슬래브의 밑면이 경사진 캔티레바식 옹벽의 내진설계)

  • Kim, Hong Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.87-98
    • /
    • 1990
  • The present Study dealt with the earthquake-resistant design of cantilever retaining walls supporting cohesionless soils. With design examples of three different types of cantilever retaining walls, the factors of safety against sliding were computed at various values of horizontal acceleration coefficient and compared with each other. The horizontal inertia effect due to the weights of concrete wall itself and a portion of backfill was taken into account in the analyses, and also Mononobe-Okabe pseudo-static solution method was modified to deal with various states different from limiting equilibrium state. From the analyses of safety against sliding, it was found that a cantilever retaining wall with sloped base was the most efficient type in earthquake resistant design. It was also found that by sloping the base, the width of the base slab could be reduced, resulting in the least volume of concrete, excavation and backfill as compared to the other types of walls. In the case of a cantilever retaining wall with sloped feel, the efficiency similar to that of a wall with sloped base could be expected under static loading as well as at relatively low level of earthquake loading. However, this efficiency became vanished with the increase of horizontal acceleration coefficient, since the rate of reduction in developed earth pressures on the heel became smaller. In addition, the design charts with different soil friction angles as well as with different earthquake resistant design criteria of safety factor against sliding were presented for the design of cantilever retaining walls sith sloped base.

  • PDF

Reliability Analysis of the Gravity Retaing Wall (중력식(重力式) 옹벽(擁壁)의 신뢰도(信賴度)에 관한 연구(研究))

  • Paik, Young Shik;Lee, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.127-135
    • /
    • 1983
  • A new approach is developed to analyze the reliability of the earth retaining wall using the concept of probability of failure, instead of conventional factor of safety. Many uncertainties, which are included in the conventional stability analysis, can be excluded by using the stochastic approach. And the reliability, more consistent with the reality, can be obtained by the simulation. The strength parameters of soil properties are assumed to be random variables to follow a generalized beta distribution. The interval [A, B] of the random variables could be determined using the maximum likelihood estimation. The pseudo-random values corresponding to the proposed beta distribution are generated using the rejection method. The probability of failure defined as follows, is obtained by using the Monte Carlo Method. $$P_f=\frac{M}{N}$$ where, $P_f$ : Probability of failure N : Total number of trials M : Total number of failure out of N A computer program is developed for the computation procedure mentioned above. Finally, a numerical example is solved using the developed program.

  • PDF

Fabrication and Characteristics of $Al_2O_{3p}$/AC8A Composites by Pressureless Infiltration Process (무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위;정해용
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • The fabrication Process of $Al_2O_{3p}$/AC8A composites by pressureless infiltration technique and the effects of additive Mg content and volume fraction of particulate reinforcement on mechanical and wear properties were investigated. It was found that the bending strength decreased with increasing volume fraction of $Al_2O_{3p}$ particles. Whereas hardness increased with volume fraction of $Al_2O_{3p}$ particles. The decrement of strength in case of high volume fraction of $Al_2O_{3p}$ particles was attributed to high porosity level. In terms of additive Mg content, $Al_2O_{3p}$/AC8A composites containing around 5~7wt% of additive Mg indicated the highest strength, and hardness values increased with additive Mg contents. Wear resistance of AC8A alloy were improved by reinforcement of $Al_2O_{3p}$ particles especially at high sliding velocity. Wear property of $Al_2O_{3p}$/AC8A composites and AC8A alloy exhibited different aspects. $Al_2O_{3p}$/AC8A composites indicated more wear loss than AC8A alloy at slow velocity region. However a transition point of wear loss was found at middle velocity region which shows the minimum wear loss and wear loss at high velocity region exhibited almost same value as at slow velocity region, whereas wear loss of AC8A alloy almost linearly increased with sliding velocity. It was found that $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 20% exhibited abrasive wear surface regardless of sliding velocity and $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 40% showed slightly adhesive wear surface at low sliding velocity, and it progressed to severe wear as increasing the sliding velocity.

  • PDF