• Title/Summary/Keyword: 마찰전기

Search Result 282, Processing Time 0.031 seconds

Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP) (CMP 연마입자의 마찰력과 연마율에 관한 영향)

  • Kim, Goo-Youn;Kim, Hyoung-Jae;Park, Boum-Young;Lee, Hyun-Seop;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

Development of Reservoir's gate for efficient operation and control of facilities (수리시설의 효율적인 운영 및 관리를 위한 저수지 사통수문개발)

  • Chung, Kwang-Kun;Lee, Kwang-Ya;Kim, Hae-Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.388-392
    • /
    • 2007
  • 지구온단화와 이상기후에 의해 시설물 피해가 나날이 증가하고 있으며, 농촌의 인구감소 및 고령화에 의해 이러한 집중강우등에 대한 대처도 어려운 실정이다. 현재 전국에서 농업용수 공급을 위해 사용하고 있는 농업용 저수지는 17,882개소로서 이 중 축조한지가 35년 이상 경과된 저수지가 15,856개소로서 88.7%나 차지하고 있다. 이러한 현상은 저수지를 구성하고 있는 각종 부대시설의 노후화로 귀결되며 농업용수의 낭비 및 효율적인 운영을 위해서는 시설의 현대화가 필수적이라고 할 수 있다. 따라서 본 연구에서는 저수지에서 물을 직접 공급하는 시설인 사통수문을 대상으로 현대화를 이룩하고 또한 사용동력도 대체에너지를 이용하기 위한 방안을 제시하였다. 사통수문의 수문비는 수중의 압력을 효율적으로 분산시킬 수 있는 원형수문비와 수중에서도 사용동력을 가장 적게 할 수 있는 밸브형을 기준으로 개발을 하였으며, 수문비와 구동부를 연결하는 작동 롯드의 힘전달을 최소화하기 위하여 유니버셜 쪼인트를 볼밸브형으로 개발하였다. 이에 따라서 작동용 롯드의 길이가 길어져도 수문비에 걸리는 작동모멘트를 최소화하여 태양광을 이용한 동력사용이 가능해졌다. 특히 수중에서 움직이는 특성을 감안하여 원형 수문비의 경우에는 수문비와 수문틀 사이에 마찰력을 감소시키기 위하여 수문틀측을 약간 경사지게 가공을 하고 중간에 볼 베이렁을 부착시켜 수문개폐가 원활토록 지수부의 구조변화를 하였다. 또한 농업용수공급시 수류와 함께 유입되는 저수지 내 오물을 차단하기 위하여 수문의 전면에 스크린을 설치하였으며 토사퇴적으로 인하여 수문작동의 방해가 되지 않도록 하기 위하여 토목구조물을 설치하였다. 그리고 동력전달을 효율적으로 하기 위하여 Solar Unit으로부터 나오는 전기를 중전기에서 밧데리로 축전을 시키고 완전 충전 후에는 나머지 전기는 방전이 되도록 회로를 구성하였다. 사통수문 자원조사 결과에 의하면 현재 저수지에 물공급을 하는 수문은 취수탑 형식이 70% 이상을 차지하고 있으며 나머지 30%의 사통수문 중 원형수문비가 98% 이상을 차지하고 있다. 현재 대체에너지를 사용하는 저수지 사통수문은 없는 것으로 조사되었으며 전력을 사용하는 사통도 조사결과에 의하면 20% 이내로 나타났다. 이러한 결과는 향후 수리시설 개보수시 적은 예산으로 사업을 시행하는 경우 사통수문의 설치방향의 지표가 될 것으로 판단되며 수리시설의 운영관리에 대한 새로운 대안으로 제시할 수 있다.

  • PDF

Development of Electret to Improve Output and Stability of Triboelectric Nanogenerator (마찰대전 나노발전기의 출력 및 안정성 향상을 위한 일렉트렛 개발)

  • Kam, Dongik;Jang, Sunmin;Yun, Yeongcheol;Bae, Hongeun;Lee, Youngjin;Ra, Yoonsang;Cho, Sumin;Seo, Kyoung Duck;Cha, Kyoung Je;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.93-99
    • /
    • 2022
  • With the rapid development of ultra-small and wearable device technology, continuous electricity supply without spatiotemporal limitations for driving electronic devices is required. Accordingly, Triboelectric nanogenerator (TENG), which utilizes static electricity generated by the contact and separation of two different materials, is being used as a means of effectively harvesting various types of energy dispersed without complex processes and designs due to its simple principle. However, to apply the TENG to real life, it is necessary to increase the electrical output. In addition, stable generation of electrical output, as well as increase in electrical output, is a task to be solved for the commercialization of TENG. In this study, we proposed a method to not only improve the output of TENG but also to stably represent the improved output. This was solved by using the contact layer, which is one of the components of TENG, as an electret for improved output and stability. The utilized electret was manufactured by sequentially performing corona charging-thermal annealing-corona charging on the Fluorinated ethylene propylene (FEP) film. Electric charges artificially injected due to corona charging enter a deep trap through the thermal annealing, so an electret that minimizes charge escape was fabricated and used in TENG. The output performance of the manufactured electret was verified by measuring the voltage output of the TENG in vertical contact separation mode, and the electret treated to the corona charging showed an output voltage 12 times higher than that of the pristine FEP film. The time and humidity stability of the electret was confirmed by measuring the output voltage of the TENG after exposing the electret to a general external environment and extreme humidity environment. In addition, it was shown that it can be applied to real-life by operating the LED by applying an electret to the clap-TENG with the motif of clap.

Geotechnical Characteristics of Reduced Slag-soil Mixtures in Electric Furnace (전기로 제강 환원 슬래그 혼합토의 지반공학적 특성)

  • Shin, Jaewon;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.31-37
    • /
    • 2011
  • Only a few studies have been conducted using reduced slag as recycled material. The reduced slag in electric furnace is produced as a by-product in making a steel and a few applications of the reduced slag as expensive additives and bonding materials or as the stabilized soils was reported. The purpose of this study is to present the feasibility of the reduced slag as recycled material, especially, in a field of civil engineering. In order to achieve the purpose experiments such as SEM and XRF analysis was conducted for the reduced slag in electric furnace. Based on the results various geotechnical experiments were conducted to know engineering properties of slag-soil mixtures. Weathered soils and clay are mixed with reduced slag for various ratios. As the ratio of reduced slag to weathered soil increases, the maximum dry unit weight of the mixture decreased with increasing optimum moisture content. The results indicates that there is no effect on a reduced slag by compaction efforts. The shear strengths of the weathered soil-slag mixtures are slightly higher or similar to those of weathered soils. The permeability of the weathered soil-slag mixtures is similar to that of silty or sandy soils. Therefore, it is possible to use the mixtures as embankment or backfill materials in the fields. The unconfined strength of the mixtures of reduced slag and clay is higher than that of clay and it tends to increase with the curing time. Therefore it can be used to improve the soft ground.

A Study on Improvement of Durability for Run-out Table Roller with Hot Rolling by Porous Self-fluxing Alloy Coating (다공질 자용성 합금 피복에 의한 열간 압연용 런-아웃 테이블 롤러의 내구성 향상에 관한 연구)

  • Bae, Myung-Whan;Park, Byoung-Ho;Jung, Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.276-285
    • /
    • 2012
  • The objective of this research is to develop the coating technique by a porous self-fluxing alloy for improving the mechanical properties of run-out table roller surface with the hot rolling. To enhance the durability of run-out table roller with the hot rolling, the high hardness of roller surface should be maintained at high temperatures, and the improvement of wear resistance, corrosion resistance, heat resistance, burn resistance and adhesion resistance should be maintained. In order to be able to transport reliably a hot rolled steel sheet, also, the appropriate friction coefficient on the roller surface should be maintained and the slip between roller and steel should not occur. In this study, the wear resistance of roller increases after the self-fluxing alloy is changed to a cermet by adding the tungsten carbide(WC), and the coefficient of friction increases and the ability of grip is improved because the porosities are made by coating with fine iron powder on the roller surface. As a result, it is found that the ability of grip between the steel and the roller coated by a porous self-fluxing alloy contained to 5 ~ 10 wt% of Fe in the coating layer is improved compared to the roller coated by Ni-Cr. This is because the porosities are made after Fe contained in the roller is partially alloyed by heating with a furnace in the fusing process and the rest is eliminated by oxidation and dissolution.

On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction (황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향)

  • Lee, Jong-Chan;Kim, Chang-Shik;Jung, Kyung-Tae;Jun, Ki-Cheon
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.

3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting (3차원 기공구조를 이용한 정전기반 에너지 하베스팅 나노발전기 소자제조)

  • Jeon, Sangheon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Here, we present a facile route to fabricate a vertically stacked 3D porous structure-based triboelectric nanogenerator (TENG) that can be used to harvest energy from the friction in a repetitive contact-separation mode. The unit component of TENG consists of thin Al foil electrodes integrated with microstructured 3D foams such as Ni, Cu, and polyurethane (PU), which provide advantageous tribo-surfaces specifically to increase the friction area to the elastomeric counter contact surfaces (i.e., polydimethylsiloxane, PDMS). The periodic contact/separation-induced triboelectric power generation from a single unit of the 3D porous structure-based TENG was up to $0.74mW/m^2$ under a mild condition. To demonstrate the potential applications of our approach, we applied our TENGs to small-scale devices, operating 48 LEDs and capacitors. We envision that this energy harvesting technology can be expanded to the applications of sustainably operating portable electronic devices in a simple and cost-effective manner by effectively harvesting wasted energy resources from the environment.

Recent Advances on TENG-based Soft Robot Applications (정전 발전 기반 소프트 로봇 응용 최신 기술)

  • Zhengbing, Ding;Dukhyun, Choi
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.378-393
    • /
    • 2022
  • As an emerging power generation technology, triboelectric nanogenerators (TENGs) have received increasing attention due to their boundless promise in energy harvesting and self-powered sensing applications. The recent rise of soft robotics has sparked widespread enthusiasm for developing flexible and soft sensors and actuators. TENGs have been regarded as promising power sources for driving actuators and self-powered sensors, providing a unique approach for the development of soft robots with soft sensors and actuators. In this review, TENG-based soft robots with different morphologies and different functions are introduced. Among them, the design of biomimetic soft robots that imitate the structure, surface morphology, material properties, and sensing/generating mechanisms of nature has greatly benefited in improving the performance of TENGs. In addition, various bionic soft robots have been well improved compared to previous driving methods due to the simple structure, self-powering characteristics, and tunable output of TENGs. Furthermore, we provide a comprehensive review of various studies within specific areas of TENG-enabled soft robotics applications. We first explore various recently developed TENG-based soft robots and a comparative analysis of various device structures, surface morphologies, and nature-inspired materials, and the resulting improvements in TENG performance. Various ubiquitous sensing principles and generation mechanisms used in nature and their analogous artificial TENG designs are demonstrated. Finally, biomimetic applications of TENG enabled in tactile displays as well as in wearable devices, artificial electronic skin and other devices are discussed. System designs, challenges and prospects of TENGs-based sensing and actuation devices in the practical application of soft robotics are analyzed.

Study on Physical Properties of Domestic Species III: Sorption, Thermal, Electrical and Acoustic properties of Liriodendron tulipifera, Betula costata, Paulownia coreana (국산재의 응용물성연구III: 백합나무, 거제수나무, 오동나무의 수분흡착성 및 열적·전기적·음향적 성질)

  • Lee, Won-Hee;Park, Byung-Soo;Chong, Sung-Ho;Kang, Ho-Yang;Hwang, Kwon-Hwan;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2008
  • A series of the studies on the applied physical properties of domestic species have been conducted last three years. Liriodendron tulipifera, Betula costata, Paulownia coreana were examined on sorption property, thermal property, electric property, acoustic property. Because the same apparatus and experimental procedures were used for all species, their results can be easily comparable. The experiments for sorption property were conducted with 80 mesh wood powder and resulted in their EMC's and sorption isotherms. The thermal conductivity and diffusivity, and electric resistance and volumetric electric resistivity were measured with a thermal-wire device and a high electric resistance meter. The differences of the thermal and electric properties between quarter-and flat-sawn specimens were observed, which was partially attributed to their anatomical differences. An acoustic measurement system was used to evaluate dynamic MOE and internal friction. This paper provides the useful fundamental data for designing a wood structure, correcting a portable resistance-type moisture meter, and acoustic properties of wood.

Electrical properties of multilayer actuator and linear ultrasonic motor using low temperature PZW-PMN-PZT ceramics (저온소결 PZW-PMN-PZT 세라믹을 이용한 적층액츄에이터 및 선형초음파 모터의 전긱적 특성)

  • Lee, Il-Ha;Yoo, Ju-Hyun;Hong, Jae-Il;Jeong, Yeong-Ho;Yoon, Hyun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.206-206
    • /
    • 2008
  • 압전소자를 이용한 초음파 모터는 전자기적 원리로 동작하는 기존의 모터에 비해 구조가 간단하고 소형, 경량화가 가능하며 저속에서 큰 토크가 가능하고 ${\mu}m$단위 까지 정밀제어가 가능하다는 장점 등으로 인해 그 응용분야가 점차 확대되고 있다. 초음파 모터의 원리는 수평과 수직방향에서 변위가 타원형 운동을 형성하는 것이다. 따라서 선택한 타원운동의 방식에 의해서 모터의 형상이 달라진다. 초음파 모터는 액츄에이터를 사용하여 만들기 때문에 액츄에이터의 특성은 모터의 타원변위나 토크에 영향을 미친다. 단판형 액츄에이터에 비하여 적층 액츄에이터는 입력 임피던스를 낮추어 낮은 구동전압에서 구동이 가능하며 큰 변위와 토크를 발생하기 때문에 진동자의 수명 향상과 구동전압을 낮추기에 적합하다. 적층 액츄에이터는 변위량이나 응력 등을 개선하기 위해서 전기기계 결합계수(kp) 및 압전 d상수가 큰 재료가 요구되며, 고전압에서 장시간 구동 시 마찰에 의한 열손실을 감소시키기 위해 높은 기계적 품질계수(Qm)를 가져야한다. 적층 시 내부전극으로 사용하는 Pd, Pt가 함유된 전극은 가격이 비싸 제조비용을 상승시킨다. 상대적으로 값싼 Ag전극을 사용하면 비용절감을 할 수 있지만 융점이 낮아서 저온소결이 불가피하다. 따라서, 특성이 우수한 적층 액츄에이터를 제조하기 위해서 저손실, 저온소결 할 수 있는 액츄에이터 재료가 필요한 실정이다. L1-B4 혈 선혈 초음파 모터는 L1모드와 B4모드의 공진 주파수가 일치하여야 큰 변위를 얻을 수 있는데 이전의 논문에서 Atila를 이용한 시뮬레이션 결과를 분석한 봐 있다. 적층 액츄에이터의 층수를 5,7,9,11,13,15층으로 하여 L1-B4모드에서의 공진주파수를 비교한 결과 13 층일 때 두 모드가 비슷한 공진주파수를 보였고, 티원변위궤적도 다른 층수에 비해 크게 나타났다. 본 연구에서는 시뮬레이션 결과 가장 좋은 특성을 보인 13층 액츄에이터로 선형 초음파 모터를 제작하였다. 또한, 액츄에이터는 압전 및 유전특성이 우수한 저온소결 PZW-PMN-PZT세라믹을 이용하여 제작하였고, 내부전극으로 Ag전극을 사용하였다. 제작된 13 층 선형초음파모터를 가지고 프리로드 및 전압에 따른 속도를 조사하였고, 시뮬레이션 결과와 비교해 보았다.

  • PDF