• Title/Summary/Keyword: 마찰력 방향

Search Result 136, Processing Time 0.028 seconds

The Optimum Design for PSC Box Girder Bridges Considering Friction Coefficient and Material Strength (마찰계수와 재료강도를 고려한 PSC 박스 거더교의 최적설계)

  • Kim, Ki Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.181-189
    • /
    • 2006
  • This study analyzes the effects of the curvature friction coefficient, the wobble friction coefficient, and the increased strength of concrete, reinforced tendon on optimum de signs by using the optimum-design program, to minimize the cost of a PSC box girder bridge using the full staging method. The objective of this study is to find a proper tendon for the friction coefficient, and thereafter, to indicate the direction of the study development about tendons and to indicate the direction of a study on the increased strength of used materials. This program used the SUMT procedure and Kavlie's extended-penalty function to allow infeasible design points in the process. Powel's direct method was used in searching design points, and the gradient approximate method was used to reduce the design hours.

Spatial Distribution Functions of Strength Parameters for Simulation of Strength Anisotropy in Transversely Isotropic Rock (횡등방성 암석의 강도 이방성 모사를 위한 강도정수 공간분포함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • This study suggests three spatial distribution functions of strength parameters, which can be adopted in the derivation of failure conditions for transversely isotropic rocks. All three proposed functions, which are the oblate spheroidal function, the exponential function, and the function based on the directional projection of the strength parameter tensor, consist of two model parameters. With assumption that the cohesion and friction angle can be described by the proposed distribution functions, the transversely isotropic Mohr-Coulomb criterion is formulated and used as a failure condition in the simulation of the conventional triaxial tests. The simulation results confirm that the failure criteria incorporating the proposed distribution functions could reproduce the general trend in the variations of the axial stress at failure and the directions of failure planes with varying inclination of the weankness planes and confining pressure. Among three distribution functions, the function based on the directional projection of the strength parameter tensor yields the highest axial strength, while the axial strength estimated by the oblate spheroidal distribution function is the lowest.

A Preliminary Study on Developing a Trafficability Index of Vehicles in Wintertime (동절기 차량의 등판가능성 지표 구축 방안)

  • Chung, Younshik;Shin, Kangwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1611-1617
    • /
    • 2013
  • Information about trafficability or the condition of road with regard to its being traveled over by vehicles is one of the most critical factors for roadway operation in winter. Specifically, when traveling on snowy or icy surfaces, the traction force varies per vehicle type including tire types, geometric characteristics of roads, and conditions of road surfaces. In general, front-wheel drive or four-wheel drive vehicles have better traction performance on snowy or icy surface than rear-wheel drive vehicles, and the latter type vehicle causes more serious traffic congestion when there is unexpected snowfall. Thus, traffic information regarding trafficability with respect to vehicle types, geometric characteristics of roadway sections, and roadway surface conditions can provide a foundation to make a decision whether to use the associated roadway sections for roadway operators as well as users. Based on the preceding premise, the objective of this study is to present a methodology for developing a trafficability index with respect to vehicle types, geometric characteristics of roadway sections, and roadway surface conditions.

Field Measurement and Analysis of Post-Tensioned Prestressed Concrete Pavement Behavior under Tensioning (현장실험을 통한 포스트텐션드 프리스트레스트 콘크리트 포장의 긴장 시 거동분석)

  • Park, Hee-Beom;Kim, Seong-Min;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.247-256
    • /
    • 2009
  • This research was conducted to analyze the behavior of PTCP (Post-Tensioned prestressed Concrete Pavement) under tensioning by performing field tests when the experimental PTCP slab was being constructed. The displacements in the slab under the environmental loading and tensioning were measured using temperature measurement sensors and displacement transducers. Tensioning was performed three times and appropriateness of tensioning could be determined by investigating the relationship between temperature and displacement, behavior of transverse crack, and daily change in displacement. The results of this study showed that under the first tensioning at very early age, large displacements were observed only near the joints because of the friction between slab and underlying layer and concrete inelasticity. Under consecutive tensioning, displacements were clearly observed all over the slab, but still affected by the friction. In addition, appropriate tensioning ensured the one-slab behavior of the PTCP slab even though cracks existed.

  • PDF

A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints (고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.513-521
    • /
    • 2006
  • Many studies have been conducted on the high tension bolt friction connection in the view of the field practice. Those effort, however, unfortunately have not been appropriately applied in the design specifications. Recently, particularly for steel bridges, rationalization of design takes greater attention from designers and hence, demand on rationalization of high tension connection becomes more significant. The purpose of this study is to suggest direction for the rationalization of high tension bolt connection and to also provide fundamental information for the improvement of the design specifications. In order to accomplish the purposes, the design specifications in Korea was analyzed and compared with other specification from abroad, and was studied one of the most important factors including slip coefficient, and the specifications on the size of bolt holes. The effect of over-sized bolt hole and the reduction of axial force on bolt was evaluated through the experimental studies on the slippage of the high tension bolt connections. Other research topics included herein includes the difference of slip coefficients, the effect of over-sized bolt holes and the gap distance of members, and the application of filler plate and corrosion protected bolts. From the research results, it is known that the specifications in Korea apply a constant slip coefficient with respect to the contacted surface conditions while various coefficients are available depending on the contacted surface conditions. Therefore, it is recommended that the specifications in Korea also develop and detail the slip coefficient which can appropriately take account of the variation of the contacted surface conditions. It is also suggested that the limitation abroad on the over-sized bolt hole may be applied for enhancing the effectiveness of construction.

The Proposal for Friction Velocity Formula at Uniform Flow Channel Using the Entropy Concept (엔트로피 컨셉을 이용한 등류수로 마찰속도식 제안)

  • Choo, Tai-Ho;Son, Hee-Sam;Yun, Gwan-Seon;Noh, Hyun-Seok;Ko, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.499-506
    • /
    • 2015
  • The friction velocity is a quantity with the dimensions of velocity defined by the friction stress and density of a wall surface at near wall of flow condition. Also, the friction velocity is the hydraulic parameter describing shear force at the bottom flow. Moreover, it is a very important factor in designing open channel and essential to determine the mixing coefficient in the main flow direction. The estimation of the friction velocity are such as methods using channel slope, linear law of the mean velocity at viscous sub-layer and direct measurement of wall shear stress, etc. In the present study, we propose a friction velocity equation that has been optimized by combining the concept of entropy, which is used in stochastic method, and to verify the proposed equation, the experimental data measured by Song was used. The R squared for friction velocities between proposed equation and friction velocity formula analyzed 0.999 to 1.000 in a very good agreement with each equation.

Analysis of Internal Pressure Capacity of Modular Containment Structure for Small Modular Reactor (소형 원자로용 모듈화 격납구조의 내압성능 분석)

  • Park, Woo-Ryong;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.362-370
    • /
    • 2019
  • The internal pressure capacity of a modular containment structure requires analysis to prevent the release of radioactive material in the case of an accident. To analyze the capacity, FEM models were prepared while considering the tendon arrangements and the contact surfaces between precast concrete modules, and then static analyses were carried out. The changing characteristics in the displacement and stress under step-wise loading were analyzed, along with the effects of selected parameters. For comparison, the capacity of a monolithic containment structure was also analyzed. Parametric analyses were done to suggest ranges of parameters such as the tendon force, tendon spacing, tendon location in concrete thickness direction, friction coefficient, and concrete thickness. The tendon force and frictional force provide a combined effect between contact surfaces of modules. The same level of internal pressure capacity can be secured even in the modular containment structure as in the monolithic containment structure by increasing the tendon force with additional tendons.

Study(II) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Improvement Measures of Current Design Method by Analyzing Current Design Data for Prebored PHC Piles - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(II) - 설계 사례 분석을 통한 매입 PHC말뚝의 설계 개선 방향 -)

  • Yea, Geu Guwen;Yun, Dae Hee;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.31-42
    • /
    • 2019
  • A total of 73 pile design data for prebored PHC piles was analyzed to study the current design method. Based on the design data, a ratio of skin friction to total capacity from the pile design data was about 20~53%. Such low ratio of skin friction to total capacity tends to underestimate skin friction. Considering this tendency, the current design method should be improved. Also, an average design efficiency of PHC pile capacity was 70% and an average design efficiency for bearing capacity of soil or weathered rock was 80%, which shows slightly higher value than the former. This is probably due to the fact that the allowable bearing capacity is estimated to be equal to or slightly higher than the design load. Hence, the allowable bearing capacity should be estimated to be higher than the long-term allowable compressive force of the PHC pile. In the current design method, skin friction is calculated to be about 2.2 times lower than end bearing. The current design method for prebored PHC piles applied foreign design methods without any verification of applicability to the domestic soil or rock condition. Therefore, the current design method for prebored PHC piles should be improved.

On the Relationship between Material Removal and Interfacial Properties at Particulate Abrasive Machining Process (연마가공에서의 접촉계면 특성과 재료제거율간의 관계에 대한 연구)

  • Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.404-408
    • /
    • 2009
  • In this paper, the relationship between the material removal rate and the interfacial mechanical properties at particle-surface contact situation, which can be seen in an abrasive machining process using micro/nano-sized particles, was discussed. Friction and stiffnesses were measured experimentally on an atomic force microscope (AFM) by using colloidal probes which have a silica colloid particle in place of tip to simulate a particle-flat surface contact in an abrasive machining process. From the experimental investigation and theoretical contact analysis, the interfacial contact properties such as lateral stiffness of contact, friction, the material removal rate were presented with respect to some of material surfaces and the relationship between the properties as well.

Finite element analysis of the effect of novel Lock Screw system preventing abutment screw loosening (지대주 나사 풀림 방지를 위한 새로운 Lock Screw 시스템의 효과에 대한 유한요소해석적 연구)

  • Im, Eun Sub;Kim, Jong Eun;Kim, Jee Hwan;Park, Young Bum
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.132-142
    • /
    • 2019
  • Purpose: The purpose of this finite element analysis study is to introduce the novel Lock screw system and analyze its mechanical property to see if it can prevent abutment screw loosening. Materials and Methods: The Lock screw is a component tightened on the inside of the implant abutment which applies compressive force to the abutment screw head. To investigate the effect, modeling was done using CAD program and it was analyzed by finite element analysis under various load conditions. First, the preload was measured according to the tightening torque of the abutment screw then it was compared with the theoretical value to verify the analytical model. The validated analytical model was then divided into those with no external load and those with 178 N, and the tightening torque of the lock screw was changed to 10, 20, 30 Ncm respectively to examine the property of stress distribution on the implant components. Results: Using Lock screw under various loading conditions did not produce equivalent stresses beyond the yield strength of the implant components. In addition, the axial load was increased at the abutment-abutment screw interface. Conclusion: The use of Lock screw does not exert excessive stress on the implant components and may increase the frictional force between the abutment-abutment screw interface, thus it is considered to prevent loosening of the abutment screw.