• Title/Summary/Keyword: 마찰공학

Search Result 1,338, Processing Time 0.022 seconds

Friction Characteristics of Geogrid -Light Weight Soil Mixed with Small Pieces of Waste EPS (지오그리드-폐 EPS조각 혼합경량토의 마찰특성)

  • 김홍택;방윤경
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.163-184
    • /
    • 1996
  • In this study, physical and geotechnical properties of the light weight mixed soil( weathered granite soil mixed with small pieces of waste EPS) were analyzed by laboratory experiments to examine its suitability for backfill materials of the reinforced-earth walls. Friction characteristics of geogrid-light weight sized soil were also investigated by performing the pullout tests for two types of geogrids having different flexural rigidity. Also a procedure was proposed to evaluate friction strength between geogrid and light weight miffed soil by using a stress-strain relationship of the orthotropic composite material subjected to both longitudinal and vertical loadings. By the procedure proposed in this study, values of the calibration coefficients ul and uf applicable for the evaluation of friction strengths between two types of geogrids and light weight mixed soils were further presented.

  • PDF

A Novel saccharification method of uncooked concentrated corn starch using an agitated bead reaction system (분쇄마찰매체 함유 반응계를 이용한 무증자 Corn starch의 고농도 당화와 당화액의 조성에 관한 연구)

  • 이용현;조구형
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.399-405
    • /
    • 1986
  • Corn starch was saccharified without cooking in an agitated bead reaction system. Uncooked corn starch was effectively hydrolyzed even at the concentration as high as 39%(w/v). After 24 hours. the extent of saccharification reached at 92%, which corresponds glucose concentration of 425g/L. Fed-batch feeding of starch was more effective than batch feeding for saccharification of uncooked corn starch. The composition of hydrolysated of uncooked starch was analyzed. which was composed of 95% glucose, 0.7% of maltose, and 4.5% of high saccharide, similar with that of cooked starch. The hydrolysate can be successfully utilized for HFCS manufacture. The starch liquefying and saccharifying enzyme was relatively stable even be the physical impact of the attrition-milling media. The enzyme stabilizer, $Ca^{++}$, played an essential role in preventing the enzyme deactivation caused by the physical impact.

  • PDF

Mechanism of Enzymatic Hydrolysis of Raw Corn Starch by Purified Glucoamylase of $\alpha$-Amylase in an Agitated Bead Reaction System (Glucoamylase 및$\alpha$-Amylase의 분쇄마찰매체 효소반응계에서의 생전분 효소분해 Mechanism)

  • 박동찬;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.260-267
    • /
    • 1990
  • The mechanism of enzymatic hydrolysis of raw corn starch by the purified glucoamylase and a - amylase in an agitated bead reaction system was studied by investigating the changes of sugar profiles produced by each enzyme, the granular structure of raw corn starch, the amount of enzyme adsorption on residual starch, and the amylose content in residual raw starch. The sugar profiles produced by the action of exo-type glucoamylase or endo-type $\alpha$ -amylase in an agitated bead system were not recognizably differed with those produced in reaction system without bead. Without enzyme the intergenic microcrystalline structure of starch granule was not changed by the simple mechanical impact of solid media, but it was cleaved. However, starch granule was fragment into large number of small particles by the synergistic action of enzyme and attrition-milling media, identified to be the major saccharification enhancing mechanism along with the increased amount of enzyme adsorption. The amylose content decreased more readily in an agitated bead reaction system, especially by $\alpha$ -amylase.

  • PDF

Influence of Taper Angle on Axial Behavior of Tapered Piles in Sand (모래지반에서 테이퍼 각도가 테이퍼말뚝의 연직거동에 미치는 영향)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.69-76
    • /
    • 2007
  • Axial behavior of tapered piles is affected by taper angle, stress state of soils, soil frictional angle and pile-soil interface friction angle. In this paper, a series of model pile load tests were performed using a calibration chamber in order to investigate the effect of taper angle on the axial response of cast-in-place tapered piles in sand. According to results of the tests, as taper angle of piles increased, the shaft load capacity of piles increased but its base load capacity decreased. The unit base load capacity of piles increased with increasing taper angle for medium sand but decreased for dense sand. The ratio of shaft to total load capacity increased with increasing taper angle and with decreasing relative density of soils. The test results also showed that total load capacity per unit pile volume increased with increasing taper angle for medium sand, but it decreased for dense sand. Therefore, it can be stated that tapered piles are economically more beneficial for medium sand than for dense sand.

A Study on Characteristics of the Unit Skin Friction Using the Wall Roughness in the Soft Rock (연암부 벽면거칠기를 이용한 단위주면마찰력 특성에 관한 연구)

  • Hong, Seok-Woo;Hwang, Geun-Bae
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.7-13
    • /
    • 2019
  • In the case of the drilled shaft, one of the methods for calculating unit skin friction stress of rock socket parts is to measure the roughness of the excavated face. This method is to estimate the unit skin frictional resistance using a device which measures the roughness shape of the excavated face in the excavation step. In this study, the roughness shapes of the face of the rock socket part in the drilled shaft were measured directly in the perforated hole and the results are used to identify the characteristics of the unit skin friction of the bedrock. In addition, the static load test and the load transfer test were performed on the same pile to verify the result of the roughness test.

An Experimental Study on the Transitional Flows in a Concentric Annu- lus with Rotating Inner Cylinder (안쪽축이 회전하는 환형관내 천이유동에 관한 연구)

  • 김영주;김철수;황영규
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.299-305
    • /
    • 2002
  • The present experimental and numerical investigations are performed on the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully devel-oped flow of water and that of 0.2% CMC-water solution at a inner cylinder rotational speed of 0∼600 rpm, respectively. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually decreased for turbulent flow regime.

Physical and Engineering Properties of Ash and Granite Soil (매립된 석탄 혼합회의 물리적 공학적 특성)

  • Kim, Dae-Hyeon;Kim, Sun-Hak;Kim, Ho-Chal;Goh, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.951-956
    • /
    • 2010
  • 본 연구에서는 $\bigcirc\bigcirc$화력발전소 회사장에 매립되고 있는 혼합회가 도로성토 및 철도노반 등 성토재로 사용될 수 있는가를 평가하기 위하여 물리적 및 역학적 특성을 평가하였다. 비중, 액소성 시험, 입도분석, XRD 시험, 강열감량시험, 실내투수시험을 통해 물리적 특성을 평가하였고 다짐시험, CBR 시험, 배수삼축압축시험을 실시하여 역학적 특성을 평가하였다. 두 가지 혼합회에 실험한 결과 비중은 2.181~2.189, 투수계수는 $1.32{\times}10^{-4}{\sim}1.89{\times}10^{-4}cm/sec$, 수정CBR은 19.5~21%, 배수마찰각은 $36.43{\sim}41.39^{\circ}$로 평가 되었다. 혼합회의 투수계수는 실트질 흙과 유사한 범위에 있으며 배수마찰각은 상대밀도가 큰 모래질 흙이 보일 수 있는 내부마찰각의 범위를 보였다. 본 연구에서 사용한 혼합회는 도로성토 및 철도노반 등 성토재로 사용할 수 있는 것으로 평가되었다.

  • PDF

A Study on the Estimation and Application of Failure Coefficients of Rock (암석의 파괴조건계수 평가 및 적용성에 관한 연구)

  • 장명환;양형식
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 1998
  • To estimate pure shear strength, 150 sets of triaxial test data were analyzed. The proportional coefficient of shear strength($I_c$) at zero normal stress was nonlinearly decreased as failure coefficient m increases, while the internal friction $\phi_0$ at zero normal stress was nonlinearly increased. The ratio of shear strength $(c/\phi_0)$was inversely proportional to the ratio of the internal friction angles$(\phi/phi_0)$ The shear strength decreased as m increased, while internal friction angle increased. And uniaxial strength was proportional to $c,\phi$ Regression analysis showed that shear strength strongly affects m and $\sigma_c$ The proportional coefficient of shear strength was nonlinearly increased with RMR, while the internal friction angle $(\phi}$was linearly decreased.

  • PDF

Mathematical Modeling of Friction Force in LM Ball Guides (LM 볼가이드 마찰력의 수학적 모델링)

  • Oh, Kwang-Je;Khim, Gyungho;Park, Chun-Hong;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.423-429
    • /
    • 2015
  • Linear motion (LM) ball guides have good accuracy and high efficiency. They are widely applied for precision machinery such as machine tools, semiconductor fabrication machines and robots. However, friction force incurs heat between the balls and grooves. Thermal expansion due to the heat deteriorates stiffness and accuracy of the LM ball guides. For accurate estimation of stiffness and accuracy during the linear motion, friction models of LM ball guides are required. To formulate accurate frictional models of LM ball guides according to load and preload conditions, rolling and viscous frictional analyses have been performed in this paper. Contact loads between balls and grooves are derived from Hertzian contact analysis. Contact angle variation is incorporated for the precision modeling. Viscous friction model is formulated from the shear stress of lubricant and the contact area between balls and grooves. Experiments confirm validity of the developed friction model for various external load and feedrate conditions.

Study on the Frition Welding Characteristics of Oxygen Free High Conductivity Copper (무산소동의 마찰 용접 특성에 관한 연구)

  • 정호신;소전강
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 1997
  • Copper and its alloy had been used widely because of its pronouncing characteristics on their high thermal and electrical conductivity. Various fusion welding methods, such as SMAW, SAW, GTAW, GMAW, Electroslag welding amd so on are applied to weld copper and its alloy. But fusion welding of copper has so many welding problems. THe most serious problems were poor penetration amd high thermal contration stress due to its high thermal conductivity and porosity could be formed by rapid cooling rate of fusion welding. In order to avoid such fusion welding problems, preheating, peering and heat treatment must be applied to obtain sound weld joint of copper. But preheating induce another welding problem such as grain coarsening of weld heat affected zone. This grain coarsening reduces ductility and strength of weld joint. In this view of point, friction welding of copper is triedm to obtain sound weld joint of copper by reducing metallurgical problems. This study introduced new concept of heat input for evaluating the friction weldability of copper. As a result, weldability of copper could be evaluated by this new concept of heat input.

  • PDF