• Title/Summary/Keyword: 마찰각

Search Result 782, Processing Time 0.028 seconds

Analysis about Speed Variations Factors and Reliability of Traffic Accident Collision Interpretation (교통사고 충돌해석의 속도변화 인자 및 신뢰성에 관한 연구)

  • Lim, Chang-Sik;Choi, Yang-Won;Jeong, Ho-Kyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.539-546
    • /
    • 2011
  • Traffic accident collision interpretation is composed of various shapes, and speed variations working to the vehicle during collision are utilized as a very important factor in evaluating collision degrees between vehicles and safety of passengers who got in the vehicle. So, methods of interpreting results on speed variations utilizing simulation programs on the collision interpretation become necessary. By the way, reliability evaluation on each program is being required because various collision interpretations simulations are spread widely. This study utilized collision interpretation programs such as EDSMAC and PC-CRASH adopting completely different physical approaches, and then carried out collision experiments of one-dimensional front and two-dimensional right angle while changing values of a lot of collision factors such as vehicle's weight, center of gravity, rolling resistance, stiffness coefficient, and braking forces among early input conditions. Also, the study recognized effects of collision factors to speed variations as output results during crashing. As a result of this research, two simulation programs showed same speed variations together on the vehicle's weight, center of gravity, and braking forces. Stiffness coefficient of the vehicle reacted to EDSMAC only, and rolling resistance coefficient did not affect any particular influences on speed variations. However, there appeared a bit comparative differences from the speed variation's values, and this is interpreted as responding outcomes by applying fixed properties values to each simulation program plainly. Therefore, reliability on analysis of traffic accident collisions shall be improved by doing speed analysis after taking the fixed value of simulation programs into consideration.

Earth Pressure Analysis of Tunnel Ceiling according to Tunnel Plastic Zone (터널 소성영역에 따른 터널 천단토압 해석)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.753-764
    • /
    • 2020
  • In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect.

Characterization of the Three Dimensional Roughness of Rock Joints and Proposal of a Modified Shear Strength Criterion (암석 절리의 3차원 거칠기 특성화와 수정 전단강도 관계식의 제안)

  • Jang, Bo-An;Kim, Tae-Ho;Jang, Hyun-Sick
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.319-327
    • /
    • 2010
  • Surface roughness profiles were measured from 19 joint samples using a laser scanner, and Joint Roughness Coefficient (JRC) values were calculated from 30 sections in each sample. Although JRC values varied with the location of the section, the average JRC values from any three sections provides an adequate representation of the average JRC value for the entire surface well. Direct shear tests were performed on nine joints reproduced using molds of real joints in samples of gypsum. The peak friction angles (${\phi}_p$) showed a linear relationship with the average JRC values, yielding the following relationship: ${\phi}_p=41.037+1.046JRC$. However, the shear strengths measured by direct shear tests differed from those calculated using Barton's criterion. The relationship between calculated from direct shear tests and JRC measured from joint surfaces is defined as $JRC_R=f{\cdot}JRC$, and the correction coefficient f is was calculated as $f=3.15JRC^{-0.5}$, as calculated by regression. A modified shear-strength criterion, is proposed using the correction coefficient, ${\tau}={\sigma}_n{\cdot}tan(3.15JRC^{0.5}{\bullet}{\log}_{10}\frac{JCS}{{\sigma}_n}+{\phi}_b)$. This criterion may be effective in calculating the shear strength of moderately weathered rock joints and highly weathered rock joints with low strength and ductile behavior.

Variation of strength of soil matrix with artificially manipulating particle distribution of granular soil (인위적 입도조정에 따른 지반의 강도특성 변화)

  • Moon, Jun-Ho;Xin, Zhen-Hua;Kim, Gab-Boo;Moon, Sun-Mi;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 2018
  • In this study, an artificially formed Gap graded soil, designed to increase its shear strength, was analyzed to determine the strength parameters through direct shear tests. Uniform and fine grain size samples were compared to the Gap graded soil to investigate the increase in the shear strength. Plate loading tests were conducted using 13mm and 19mm aggregates to confirm the reproducibility of the strength enhanced samples for site application. This test confirmed that the particle size ratio and the internal friction angle are correlated to the shear strength, and the shear resistance angle significantly increased in the specific particle size ratio range. The calculation of the ultimate bearing capacity by the plate load test demonstrated that the grain size adjustment method greatly influences the strength increase rate. Therefore, the findings were verified and it was confirmed that a high shear strength is achievable despite the existence of a poor particle size distribution.

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling (정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석)

  • Shin, Eung-Soo;Kim, Hyun-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.

A Study of a Model for Calculating Passing Sight Distance (추월시거 산정 모형에 관한 연구)

  • 김영호;손봉수;전경수
    • Journal of Korean Society of Transportation
    • /
    • v.15 no.3
    • /
    • pp.75-92
    • /
    • 1997
  • 추월가능성을 판단하기 위해서 앞을 바라볼 수 있어야 하는 거리를 추월시거라 한다. 적절한 추원시거의 확보는 2차선 도로의 효율성과 운전자의 안전성 제고 및 도로설계시 매우 중요하다. 이러한 목적을 위하여 추월시거를 산정할 수 있는 여러 모형이 개발되었으나, 실제 교통상황을 반영하기에 많은 문제점을 안고 있음이 지적되고 있다. 따라서 본 논문은 기존 모형들의 이론적 배경을 고찰하고, 각 모형의 단점과 한계를 파악하여, 운전자의 실제 추월형태를 고려한 새로운 추월시거산정모형을 개발하는데 주안점을 두고 있다. 본 논문에서 개발한 PASS모형은 현재 미국에서 도로설계시 기준으로 사용되고 있는 AASHTO모형을 보완하여 구축하였다. 기존의 모형들은 서로 다른 조건을 가정하여 개발되었기 때문에 각 모형들의 추월시거 산정값을 비교분석하는데 어려움이 있다. 하지만 PASS모형은 운전자의 반응시간, 차량의 길이, 차량의 가속능력 등 실제 추월시거 산정시 반드시 고려해야 할 중요한 요소들을 특성치로 반영할 수 있게 함으로써 다양한 추월 상황과 현실적인 교통상황을 폭넓게 수용할 수 있는 장점을 갖고 있다. 본 논문에서는 새로 개발한 P SS모형을 이용하여 얻은 결과와 기존의 AASHTO모형, MUTCD모형, Glennon모형을 통해 얻은 결과를 비교하였으며, PASS모형에 우리나라 현실에 적합한 특성치를 적용하여 2차로 도로의 추월시거를 산정하였다. 이 결과 현재 우리나라 도로용량편람에서 제시하고 있는 추월기능구간 기준인 450m가 설계속도가 낮은 일반국도에는 타당함을 확인할수 있었다. 그러나, 설계속도가 높은 화물타의 운행빈도가 높은 고속국도의 경우, 재검토가 필요할 것으로 판단된다.기존의 광유계 윤활제에 비하여 대단히 고가하는 문제점을 갖고 있다. 그러나 윤활 마찰면의 다양화와 가혹한 사용조건은 자성유체 윤활제의 연구개발 필요성을 크게 증대시키고 있다.xed Effects Model)을 결정하고, 각각에 해당하는 통계모형을 구축하였다. 이 결과 (1) 업종 및 기업규모별로 그룹간에 유의한 특성이 발견되었으며, (2) R&D 및 광고투자는 기업의 시장성과를 설명하는 중요한 변수이나, (3) R&D 투자의 경우는 광고에 비해 불확실성이 존재하는 것으로 나타났고, (4) 수리모형에서 도출된 한계원리가 통계모형에서도 유효한 것으로 드러났다.등을 토대로 한 10대 산업을 육성하기 위하여 과학기술부는 기술수요조사를 바탕으로 49개 주요기술을 도출하여, 과학기술 일류 국가 실현, 국민소득 2만불 달성이라는 국가적 슬로건을 내걸고 “차세대 성장동력” 창출을 위한 범정부차원의 기획과 연구비의 집중투자를 추진하고 있다.달성하기 위해서는 종합류류 전산망의 시급한 구축과 함께 화물차의 적재율을 높이고 공차율을 낮출 수 있는 운송체계의 수립이 필요한 것으로 판단된다. 그라나 이러한 화물전용차선의 효과는 단기적인 치유책일 수밖에 없기 때문에 물류유통 시설의 확충을 위한 사회간접자본의 구축을 서둘러 시행하여야 할 것이다.으로 처리한 Machine oil, Phenthoate EC 및 Trichlorfon WP는 비교적 약효가 낮았다.>$^{\circ}$E/$\leq$30$^{\circ}$NW 단열군이 연구지역 내에서 지하수 유동성이 가장 높은 단열군으로 추정된다. 이러한 사실은 3개 시추공을 대상으로 실시한 시추공 내 물리검층과

  • PDF

Enhanced heat transfer in the convergent rectangular channels with ∧/∨-shaped ribs on one wall (한 면에 ∧/∨형 리브가 있는 2벽면 수축 사각채널의 열전달 증가)

  • Lee, Myung-Sung;Yu, Ji-Ui;Jeong, Hee-Jae;Choi, Dong-Geun;Ha, Dong-Jun;Go, Jin-Su;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.270-274
    • /
    • 2016
  • The effect of the rib angle-of-attack on heat transfer in the convergent channel with ${\vee}/{\wedge}$-shaped ribs was examined experimentally. Four differently angled ribs (a = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$) were placed to only the one sided wall. The ribbed wall was manufactured with a fixed rib height (e) of 10 mm and rib spacing (p)-to-height (e) ratio of 10. The convergent channel had a length of 1,000 mm and a cross-sectional areas of $100mm{\times}100mm$ at inlet and $50mm{\times}100mm$ at exit. The measurement was conducted for the Reynolds numbers ranging from 22,000 to 75,000. The results show that the Nusselt number is generally higher at higher Reynolds number and that an angle-of-attack of $45^{\circ}$ at the ${\wedge}$-shaped rib produces the greatest Nusselt number.

Shape Oscillation and Detachment of Droplet on Vibrating Flat Surface (진동하는 평판 위의 액적의 형상 진동 및 제거 조건에 대한 연구)

  • Shin, Young-Sub;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.337-346
    • /
    • 2014
  • This study aimed to understand the mode characteristics of a droplet subject to periodic forced vibration and the detachment of a droplet placed on a plate surface. An surface was coated with Teflon to clearly observe the behavior of a droplet. The contact angle between the droplet and surface and the hysteresis were found to be approximately $115^{\circ}C$ and within $25^{\circ}C$, respectively. The coating process was performed in a clean room that had an environment with a low level of contaminants and impurities such as air dust, detergents, and particles. To predict the resonance frequency of a droplet, theoretical and experimental approaches were applied. Two high-speed cameras were configured to acquire side and top views and thus capture different characteristics of a droplet: the mode shape, the detachment, the separated secondary droplet, and the waggling motion. A comparison of the theoretical and experimental results shows no more than 18 discrepancies when predicting the resonance frequency. These differences seem to be caused by contact line friction, nonlinear wall adhesion, and the uncertainty of the experiment. For lower energy inputs, the contact line of the droplet was pinned and the oscillation pattern was axisymmetric. However, the contact line of the droplet was de-pinned as the oscillation became more vigorous with increased energy input. The size of each lobe at the resonance frequency is somewhat larger than that at the neighboring frequency. A droplet in mode 2, one of the primary mode frequencies, exhibits vertical periodic movement as well as detachment and secondary ejection from the main droplet.

Prediction of Brittle Failure within Mesozoic Granite of the Daejeon Region (대전지역 중생대 화강암 암반 내 취성파괴 예측연구)

  • Jang, Hyun-Sic;Choe, Mi-Mi;Bae, Dae-Seok;Kim, Geon-Young;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.357-368
    • /
    • 2015
  • Brittle failure of Mesozoic granite in the Daejeon region is predicted using empirical analysis and numerical modeling techniques. The input parameters selected for these techniques were based on the results of laboratory tests, including damage-controlled tests. Rock masses that were considered to be strong during laboratory testing were assigned to "group A" and those considered to be extremely strong were assigned to "group B". The properties of each group were then used in the analyses. In-situ stress measurements, or the ratio of horizontal to vertical stress (k), were also necessary for the analyses, but no such measurements have been made in the study area. Therefore, k values of 1, 2, and 3 were assumed. In the case of k=1, empirical analysis and numerical modeling show no indication of brittle failure from the surface to1000 m depth. When k=2, brittle failure of the rock mass occurs at depths below 800 m. For k=3, brittle failure occurs at depths below 600 m. Although both the Cohesion Weakening Friction Strengthening (CWFS) and Mohr-Coulomb models were used to predict brittle failure, only the CWFS model performed well in simulating the range and depth of the brittle failure zone.

The Effect of Export Volume, Export Price Index and Treasury Bond Interest Rate on Export Amount (수출물동량과 수출물가지수, 국고채금리가 수출금액에 미치는 영향)

  • Kim, Shin-Joong;Choi, Jeong-Il
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.133-140
    • /
    • 2019
  • Following the recent US trade deficit, the trade war began between Korea and Japan in July. Korea's trade dependence is about 60% or more, indicating high export dependence and import dependence. The purpose of this study is to examine export amount, export volume, export price index, Treasury bond interest rate and analyze how index affects export amount. This study attempts to analyze the comovement and volatility with export amount. For this purpose, monthly data for each indicator were selected for a total of 234 months from January 2000 to June 2019. As a result of analysis, exports amount and exports volume showed very high comovement, exports amount and interest rates showed low comovement, but exports amount and exports prices showed very low comovement. In the future, Korea should continue to increase exports amount in view of its high dependence on trade, along with policies to expand the domestic market. To this end, strategy to increase exports volume should be presented. Korea should increase the logistics environment and competitiveness of each port and airport, improve domestic and overseas network construction and support services of logistics companies.