• 제목/요약/키워드: 마이크로-ESPI

검색결과 7건 처리시간 0.025초

마이크로 ESPI기법을 이용한 동 박막의 인장 특성 측정 (Measurement of Tensile Properties of Copper Foil using Micro-ESPI Technique)

  • 김동일;허용학;기창두
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.89-96
    • /
    • 2004
  • Micro-tensile testing system, consisting of a micro tensile loading system and micro-ESPI(Electronic Speckle Pattern Interferometry) system, has been developed for measurement of micro-tensile properties of thin micro-materials. Micro-tensile loading system had a load cell with the maximum capacity of 50N and micro actuator with resolution of 4.5nm in stroke. The system was used to apply a tensile load to the micro-sized specimen. During tensile loading, the micro-ESPI system acquired interferornetric speckle patterns in the deformed specimen and measured the in-plane tensile strain. The ESPI system consisted of a CCD-camera with a lens and the window-based program developed for this experiment. Using this system, stress-strain curves for 4 kinds of electrolytic copper foil 18$\square$m thick were obtained. From these curves, tensile properties, including the elastic modulus. yielding strength and tensile strength, were determined and also values of the plastic exponent and coefficient based on Ramberg-Osgood relationship were evaluated.

마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상 (Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique)

  • 김동일;기창두;허용학
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.54-63
    • /
    • 2006
  • Enhancement methods of sensitivity to in-plane strain measurement by micro-ESPI(Electronic Speckle Pattern Interferometry) technique were proposed using TiN and Au thin films. Micro-tensile strain over the micro-tensile specimens, prepared in micro-scale by those films, was measured by micro-tensile loading system and micro-ESPI system developed in this study. The subsequent measurement of in-plane tensile strain in the micro-sized specimens was introduced using the micro-ESPI technique, and the micro-tensile stress-strain curves for these films were determined. To enhance the sensitivity to measurement of in-plane tensile strain, algorithms of the phase estimation by using curve fitting of inter-fringe and the discrete Fourier Transform with object-induced dynamic phase shifting were developed. Using these two algorithms, the micro-tensile strain-stress curves were generated. It is shown that the algorithms for enhancement of the sensitivity suggested in this study make the sensitivity to measurement of the in-plane tensile strain increase.

마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상 (Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique)

  • 김동일;허용학;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1442-1445
    • /
    • 2005
  • Several test methods, including micro strain/deformation measurement techniques, have been studied to more reliably measure the micro properties in micro/nano materials. Therefore, in this study, the continuous measurement of in-plane tensile strain in micro-sized specimens of thin film materials was introduced using the micro-ESPI technique. TiN and Au thin films 1 and $0.47\;\mu{m}$ thick, respectively, were deposited on the silicon wafer and fabricated into the micro-sized tensile specimens using the electromachining process. The micro-tensile loading system and micro-ESPI system were developed to measure the tensile strain during micro-tensile test. The micro-tensile stress-strain for these materials was determined using the algorithm for continuous strain measurement. Furthermore, algorithm for enhancing the sensitivity to measurement of in-plane tensile strain was suggested. According to the algorithm for enhancement of sensitivity, micro-tensile strain data between interfringe were calculated. It is shown that the algorithm for enhancement of the sensitivity suggested in this study makes the sensitivity to the in-plane tensile strain increase.

  • PDF

나노 코팅재 TiN 의 마이크로 인장 특성 평가 (Evaluation of Micro-Tensile Properties for Nano-coating Material TiN)

  • 허용학;김동일;한준희;김광석;연순창;김용협
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.240-245
    • /
    • 2004
  • Tensile properties of hard coating material, TiN, were evaluated using micro-tensile testing system. TiN has been known as a hard coating material commonly used today. Micro-tensile testing system consisted of a micro tensile loading system and a micro-ESPI(Electronic Speckle Pattern Interferometry) system. Micro-tensile loading system had a maximum load capacity of 500mN and a resolution of 4.5 nm in stroke. TiN thin film $1{\mu}m$ thick was deposited on the Si wafer pre-deposited of $Si_3N_4$ film substrate by the closed field unbalanced magnetron sputtering (CFUBMS) process. Three kinds of micro-tensile specimen with the respective width of $50{\mu}m$, $100{\mu}m$ and $500{\mu}m$ were fabricated by MEMS process. The mechanical properties including tensile strength and elastic modulus were determined using the micro-tensile testing system and compared by those obtained by nano-indentation

  • PDF