• Title/Summary/Keyword: 마이크로 포토에칭

Search Result 9, Processing Time 0.03 seconds

외날 다이아몬드 회전공구를 이용한 마이크로 형상가공 연구

  • Je, Tae-Jin;Lee, Jong-Chan;Choi, Hwan;Choi, Doo-Sun;Lee, Eung-Sook;Hong, Sung-Min
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.265-265
    • /
    • 2004
  • 최근 IT산업으로 대표되는 광통신 및 광신호 전달에 이용되는 광 반사경 및 렌즈어레이, 광가이드 판넬(BLU, FLU)등 광부품의 수요가 급증하고 있고, 이의 생산을 위한 다양한 제조공정이 연구 개발되고 있다 근년까지 이러한 마이크로 광부품의 제조방법은 포토리소그래피, 에칭기술을 베이스로 한 MEMS 기술, PDMS를 이용한 복재기술에 크게 의존하고 있다. 기계적 가공법으로는 오래전부터 초정밀 경면 선삭이나 연삭에 의한 마이크로 렌즈와 미세 패턴의 금형가공이 이루어져 왔다.(중략)

  • PDF

Heat Transfer Characteristics and Pressure Drop in Straight Microchannel of the Printed Circuit Heat Exchangers (직관 마이크로채널 PCHE의 열전달특성 및 압력강하)

  • Kim, Yoon-Ho;Seo, Jung-Eun;Choi, Young-Jong;Lee, Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.915-923
    • /
    • 2008
  • The performance experiments for a microchannel printed circuit heat exchanger (PCHE) of high-performance and high-efficiency on the two technologies of micro photo-etching and diffusion bonding were performed in this study. The microchannel PCHE were experimentally investigated for Reynolds number in ranges of 100 $\sim$ 700 under various flow conditions in the hot side and the cold side. The inlet temperatures of the hot side were conducted in range of $40^{\circ}C\;{\sim}\;50^{\circ}C$ while that of the cold-side were fixed at $20^{\circ}C$. In the flow pattern, the counter flow was provided 6.8% and 10 $\sim$ 15% higher average heat transfer rate and heat transfer performance than the parallel flow, respectively. The average heat transfer rate, heat transfer performance and pressure drop increases with increasing Reynolds number in all the experiment. The increasing of inlet temperature in the experiment range has not an effect on the heat transfer performance while the pressure drop decrease slightly with that of inlet temperature. The experimental correlations to the heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been suggested for the microchannel PCHE.

Design of a microstripe line ceramic dielectric filter (마이크로스트립라인 세라믹 유전체필터 설계)

  • Ko, Hee-Youl;Kim, Chung-Hoi;Kang, Byung-Don;Koo, Bon-Keup
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.712-715
    • /
    • 2012
  • 본 논문에서는 EM 시뮬레이터를 이용하여 LTE2300 대역의 마이크로스트립 라인 대역여파기를 설계하고 시편을 제작하였다. 중심주파수 2300MHz, 대역폭 350MHz, 삽입손실 1.5dB, 감쇄는 1930MHz와 2690MHz에서 15dB 이상, 1000MHz에서 60dB 이상으로 설계하였다. 또한 반사손실은 15dB로 설계하였다. 구현은 유전율 9.8인 알루미나 유전체에서 하였으며, 전송선로와 접지는 silver paste를 사용하였다. EM 시뮬레이션을 통해 얻은 결과값과 이를 통해 실제 제작된 시편의 보정값을 얻어 data base화 하였으며, 좋은 재현성을 얻을 수 있음을 확인하였다. 특히 일반적으로 마이크로스트립 라인 필터의 제작에 적용되는 에칭 또는 포토리소그라피 대신 레이저를 이용하여 패턴을 구현하였으며, 이 또한 우수한 특성과 재현성을 보여주었다.

  • PDF

A Study on the Shift of Center Frequencies of Superconducting 14 GHz YBCO Filters (초전도 YBCO 필터의 중심 주파수 변화 연구)

  • Song, Seok-Cheon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.500-502
    • /
    • 2000
  • 고온 초전도 YBCO 박막을 Nd:YAG 레이저를 이용하여 MgO 기판에 증착시켰다. 박막을 마이크로스트립형 통신소자로 제작하기 위해 포토리스그래피 방법으로 습식 에칭을 시켰다. 제작된 박막에 접지면을 입히기 위해 스퍼터링 방식으로 Ti 충을 30 nm 증착하고, 열 증발기로 Ag를 $2{\mu}m$ 정도로 증착을 시켰다. 소자의 주파수 응답을 측정하기 위해 캐비티를 제작하여 측정하였다. 제작된 필터의 중심 주파수는 14 GHz이다. 박막을 냉각시켜며 그 중심 주파수를 측정하여 임계 온도를 측정할 수 있었다. 필터는 두 가지 디자인을 이용하였으며, 임계 온도에서의 중심주파수가 일정하게 이동함을 관찰할 수 있었다.

  • PDF

The Scattering Beam Measurement of the RBC and the Fabrication of the Micro Cell Biochip (적혈구의 산란빔 측정과 마이크로 세포 분석 바이오칩 제작)

  • Byun, In Soo;Kwon, Ki Jin;Lee, Joon Ha
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.116-121
    • /
    • 2014
  • Next future, The bio technology will be a rapidly developing. This paper is the scattering beam measurement of the red blood cell (RBC) and the fabrication of the micro cell biochip using the bio micro electro mechanical system (Bio-MEMS) process technology. The Major process method of Bio-MEMS technology was used the buffered oxide etchant (BOE), electro chemical discharge (ECD) and ultraviolet sensitive adhesives (UVSA). All experiments were the 10 times according to the process conditions. The experiment and research are required the ultraviolet expose, the micro fluid current, the cell control and the measurement of the output voltage Vpp (peak to peak) waveform by scattering angles. The transmitting and receiving of the laser beam was used the single mode optical fiber. The principles of the optical properties are as follows. The red blood cells were injected into the micro channel. The single mode optical fiber was inserting in the guide channel. The He-Ne laser beam was focusing in the single mode optical fiber. The transmission He-Ne laser beam is irradiating to the red blood cells. The manufactured guide channel consists of the four inputs and the four outputs. The red blood cell was allowed with the cylinder pump. The output voltage Vpp waveform of the scattering beam was measured with a photo detector. The receiving angle of the output optical fiber is $0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The magnitude of the output voltage Vpp waveform was measured in the decrease according to increase of the reception angles. The difference of the output voltage Vpp waveform is due differences of the light transmittance of the red blood cells.

An Experimental Study on the Evaporative Heat Transfer Characteristics of R-134a in a Micro-Channel Heat Exchanger (마이크로채널 열교환기에서 R-134a의 증발열전달 특성에 관한 실험적 연구)

  • Lee, Hae-Seung;Jeon, Dong-Soon;Kim, Young-Lyoul;Kim, Yong-Chan;Kim, Seon-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.113-120
    • /
    • 2010
  • An experimental investigation was carried out to examine the evaporative heat transfer characteristics of R-134a in a micro-channel heat exchanger. The micro-channel heat exchanger used in this study was a sort of plate heat exchanger. Micro-channels were fabricated on the SUS304 plate by the photo-etching process: 13 sheets of plates were stacked and bonded by the diffusion bonding process. The effects of the evaporating temperature, mass flux of R-134a, and inlet temperature of water were examined. As the difference between the inlet temperatures of R-134a and water increased, the heat transfer rate increased. The evaporative heat transfer coefficients obtained in this study range from 0.67 to 6.23 kW/$m^2{\cdot}^{\circ}C$. The experimental correlation for the Nusselt number as a function of the Reynold number and $\Theta$ was suggested for the micro-channel heat exchanger.

Design of a Narrow-Band Bandpass Filter Using Microstrip Open-Loop Resonators With Coupled and Crossing Lines (결합 및 교차 선로를 갖는 마이크로스트립 개방루프 공진기를 이용한 협대역 대역통과 여파기 설계)

  • 안승현;이영구;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.1011-1016
    • /
    • 2001
  • In this paper, a narrow-band bandpass filter using microstrip open-loop resonators with coupled and crossing lines is designed and fabricated. This filter has many advantages such as compact in size, low weight and the characteristic of the elliptic-function narrow-band bandpass filtering. The configuration consists of two identical microstrip open loop resonators, coupled line and crossing line. By using open loop resonators, the size of the filter can be reduced about 50% compared with the ring resonators. A crossing line gives two notchs in the stopband, which have sharp selectivity in the passband. Centered at 2.455GHz, the calculated microstrip bandpass filter shows a bandwidth of 1.22%, which makes it very attractive for application in the wireless LAN. The filter is fabricated by photo-etching process. The fabricated bandpass filter shows that the bandwidth is 0.85% for 2.458GHz and the size is only $2.6cm\times1cm$.

  • PDF

A Novel Patterning Method for Silver Nanowire-based Transparent Electrode using UV-Curable Adhesive Tape (광경화 점착 테이프를 이용한 은 나노와이어 기반 투명전극 패터닝 공법)

  • Ju, Yun Hee;Shin, Yoo Bin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.73-76
    • /
    • 2020
  • Silver nanowires (AgNWs) intrinsically possess high conductivity, ductility, and network structure percolated in a low density, which have led to many advanced applications of transparent and flexible electronics. Most of these applications require patterning of AgNWs, for which photolithographic and printing-based techniques have been widely used. However, several drawbacks such as high cost and complexity of the process disturb its practical application with patterning AgNWs. Herein, we propose a novel method for the patterning of AgNWs by employing UV-curable adhesive tape with a structure of liner/adhesive layer/polyolefin (PO) film and UV irradiation to simplify the process. First, the UV-curable adhesive tape was attached to AgNWs/polyurethane (PU), and then selectively exposed to UV irradiation by using a photomask. Subsequently, the UV-curable adhesive tape was peeled off and consequently AgNWs were patterned on PU substrate. This facile method is expected to be applicable to the fabrication of a variety of low-cost, shape-deformable transparent and wearable devices.

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF