• Title/Summary/Keyword: 마이크로 텍스쳐

Search Result 10, Processing Time 0.029 seconds

Machining of Repetitive Micro Patterns using Oscillation Micro Milling (진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구)

  • Ro, Seung-Kook;Khim, Gyungho;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.

마이크로 블라스터를 이용한 태양전지용 재생웨이퍼 제작

  • Jeong, Dong-Geon;Gong, Dae-Yeong;Jo, Jun-Hwan;Jeon, Seong-Chan;Seo, Chang-Taek;Lee, Yun-Ho;Jo, Chan-Seop;Bae, Yeong-Ho;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.376-377
    • /
    • 2011
  • 결정질 실리콘 태양전지 연구에 있어서 가장 중요한 부분은 재료의 저가화와 공정의 단순화에 의한 저가의 태양전지 셀 제작 부분과 고효율의 태양전지 셀 제작 부분이다. 본 논문에서는 마이크로 블라스터를 이용하여 폐 실리콘 웨이퍼를 태양전지용 재생웨이퍼를 제작함으로써 고효율을 가지는 단결정 실리콘 웨이퍼를 저 가격에 생산하기 위한 것이다. 특히 마이크로 블라스터를 이용하여 폐 실리콘 웨이퍼를 가공 할 때 표면에 생성되는 요철은 기존 태양전지 셀 제작에서 텍스쳐링 공정과 같은 표면 구조를 가지게 됨으로써 태양전지 셀에 제작 공정을 줄일 수 있는 효과도 가지게 된다. 마이크로 블라스터는 챔버 내에 압축된 공기나 가스에 의해 가속 된 미세 파우더들이 재료와 충돌하면서 재료에 충격을 주고 그 충격에 의해 물질이 식각되는 기계적 건식 식각 공정 기술이다. 이러한 물리적 충격을 이용하는 마이크로 블라스터 공정은 기존 재생웨이퍼 제작 공정 보다 낮은 재처리 비용으로 간단하게 태양전지용 재생웨이퍼를 제작 할 수 있다. 하지만 마이크로 블라스터를 이용하면 표면에 식각된 미세 파티클의 재흡착이 일어나게 되므로 이를 제거하기 위하여 DRE(damage remove etching) 공정이 필요하게 된다. 본 연구에서는 이방성, 등방성 식각 공정으로 태양전지용 재생웨이퍼를 제작하기 위해 가장 적합한 DRE 공정을 찾기 위해 등방성 식각은 RIE 식각으로, 그리고 이방성 식각은 TMAH 식각을 이용하였다. 마이크로 블라스터 공정 후 표면 반사율과 SEM 사진을 이용한 표면 요철 구조를 확인 하였고, DRE 공정 후 표면 반사율과 SEM 사진을 이용하여 표면 요철 구조를 확인 하였다. 각각의 lifetime을 측정하여 표면 식각으로 생성된 결함들을 분석하여 태양전지용 재생웨이퍼 제작에 가장 적합한 공정을 확인 하였다.

  • PDF

Analyzing Friction Coefficient and Wettability of Micro-Dimple Fabricated Using Elliptical Vibration Texturing Method (이중 주파수 타원형 진동 궤적법 기반 마이크로 딤플의 마찰계수 및 습윤성 분석)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2020
  • Surface texturing of micro-dimples has been used in many manufacturing industries to reduce friction between two sliding contacted surfaces. Surface texturing decreases the frictional force owing to minimizing of the sliding contact area. In this paper, micro-dimples have been fabricated on an Al6061-T6 surface using a two-frequency elliptical vibration texturing (TFEVT) method. A high-frequency of 18 kHz and low-frequency of 250 Hz were applied to an elliptically-vibrated tool holder. The Stribeck curve was plotted to analyze the friction coefficient trends. Furthermore, the representative wetting index, such as the water contact angle (WCA), was measured by considering the friction coefficient. WCA is associated with micro-dimple density and associated parameters. Consequently, the dimpled surfaces with a low friction coefficient exhibited a relatively high WCA in the feed direction. According to the Stribeck curve, the dimpled surfaces demonstrate superior friction performance for mixed-film lubrication compared to the non-textured surface.

Friction Characteristics of Micro-scale Dimple Pattern under Mixed and Hydrodynamic Lubrication Condition (혼합 및 유체윤활하에서 Micro-Scale Dimple Pattern의 마찰특성)

  • Chae Young-Hun;Kim Seock-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.188-193
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

Two Step Surface Texturing of Silicon Wafers using Micro Blaster (마이크로 블라스터를 이용한 실리콘 웨이퍼의 2단계 표면 텍스쳐링)

  • Cho, Chan-Seob;Jung, Sang-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2010
  • Recently, the important issues of solar cell are low cost and high efficiency. Making low cost and high efficiency solar cell, there are many effects to development of inexpensive wafer, simplify process and improve optical, electrical properties. In this the study, the 2 step texturing method using micro blaster was developed to decrease reflection of incident lights. Air bridge electrode structure is suggested to expand the effective surface area and decrease the series resistance of finger electrode. The effects of 1 step texturing and 2 step texturing by micro blaster are compared. Reflectance of 1 step and 2 step texturing are measured 28.7% and 25.5%, respectively. The reflectance of 2 step texturing sample is lower about 3.2% than 1 step textured sample.

A Study on Evaluating the Applicability of Trapezoidal-shaped Grooves to Airport Runways (사다리꼴 형상 그루빙의 공항 활주로 적용성 평가 연구)

  • Cho, Nam-Hyun;Kim, Dong-Chul;Phi, Seung-Woo;Shin, Joong-Ha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • This study is to evaluate the applicability and performance of trapezoidal-shaped grooves on domestic airport runways. For this, the constructability, drainage performance, and friction resistance characteristics of trapezoidal-shaped grooves compared to square-shaped grooves were evaluated through test construction on pavement at Incheon Airport. As a result of the test construction, the trapezoidal-shaped grooves satisfies the required geometry standards and tolerance, and secured a macrotexture that was 25% improved compared to the square-shaped grooves. It was confirmed that trapezoid-shaped grooves secured drainage performance of more than 7-9%, and surface friction performance improved compared to existing grooves when the surface of the pavement was wet as the test speed increased in the dry state. In addition, after trapezoidal-shaped grooves was installed on the RWY 16R/34L of Incheon Airport, the friction coefficient was 0.84, which satisfies the design level of the new runway surface of 0.82 at the test speed.

요철 구조를 가지는 유리 기판을 이용한 고효율 태양전지모듈

  • Gong, Dae-Yeong;Kim, Dong-Hyeon;Jo, Jun-Hwan;Jeong, Dong-Geon;O, Jeong-Hwa;Kim, Bong-Hwan;Jo, Chan-Seop;Bae, Yeong-Ho;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.417-419
    • /
    • 2011
  • 태양전지 모듈은 back sheet, 후면 충진재, 태양전지 cell, 전면 충진재, 전면 보호유리의 구성으로 되어 있다. back sheet는 유리 또는 금속을 사용하는데 사용 재료에 따라 각각 유리봉입방식, 슈퍼스트레이트방식으로 구분된다[1]. 태양전지를 보호하기 위한 충진재는 빛의 투과율 저하가 적은 PVB(Poly Vinyl Butylo)나 내습성이 뛰어난 EVA(Ethylene Vinyl Acetate) 등이 주로 이용된다. 유리봉입방식과 슈퍼스트레이트 방식의 공통점은 모듈 전면에 투과율과 내?충격 강도가 좋은 강화 유리를 사용하는 것이다. 하지만 현재 모듈의 전면 유리는 평탄한 표면 때문에 태양고도가 낮을 때 상대적으로 반사율이 높은 단점을 가지고 있다[2]. 이러한 문제점을 해결하기 위한 방안으로 표면 유리에 요철(anti-glare) 구조를 형성하면 평면 구조의 표면에서 반사되는 태양광이 일부 태양전지 내부로 재입사가 일어나게 되어 표면 반사율이 낮아지게 되고, 이로 인하여 태양전지의 효율이 증가하게 된다. 특히 이러한 효과는 태양고도가 낮아졌을 때 요철(anti-glare) 구조에 의한 반사율의 감소가 증가하기 때문에 평면 구조보다 요철(anti-glare) 구조의 태양전지 모듈 효율이 향상될 것이다. 본 논문에서는 요철(anti-glare) 구조를 만들기 위해서 유리와 평면 구조의 유리에서의 반사율과 투과율을 측정하여 비교 분석하였고, 특히 태양고도의 고도가 변할 때를 비교하기 위하여 반사율 및 투과율을 측정 할 때 입사광의 각도를 변화시켰다. 그리고 태양전지 cell 위에 요철(anti-glare) 구조의 유리와 평명 구조의 유리를 각각 위치시킨 후 태양전지 cell의 효율변화를 확인하였다. 이때 태양전지 cell의 표면은 이방성 식각 용액을 이용하여 역피라미드 구조의 텍스쳐링 태양전지 cell과 평면 구조의 태양전지 cell을 각각 사용하여 비교하였다.

  • PDF

Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing (마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링)

  • Hong, Jihwa;Han, Yoon-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.

NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES (미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구)

  • Hong, S.H.;Lee, J.B.;Cho, M.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF

Solar Module with a Glass Surface of AG (Anti-Glare) Structure (연요철(Anti-Glare) 구조의 표면 유리 기판을 가지는 고효율 태양전지 모듈)

  • Kong, Dae-Young;Kim, Dong-Hyun;Yun, Sung-Ho;Bae, Young-Ho;Yu, In-Sik;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.233-241
    • /
    • 2011
  • Currently, solar module is using the two methods such as a glass-filled method or a super-straight method. The common point of these methods is to use glass structure on the front of solar module. However, the reflectance of the solar module is high depending on the height of the incident sunlight due to the flat surface of the module front glass. Purposed to solve these problems, AG (anti-glare) structures were formed on the glass surface. Next is fabrication methods of AG structure. First, uneven structure made by micro blaster equipment was dipped in Hydro-fluidic acid (HF) acid. HF acid process was carried out to remove particles and to make high transmittance. The reflectance and transmittance of the anti-glare glass was compared to those of the bare glass. The reflectance of anti-glare glass decreased approximately 1% compared with bare glass. The transmittance of anti-glare glass was similar to bare glass. According to the sample angle, the difference of the reflectance between bare glass and the anti-glare glass was about 19%. Isc and efficiency value of anti-glare glass on bare solar cell appeared about 3.01 mA and 0.228% difference compared with bare glass. Anti-glare glass on textured solar cell appeared about 9.46 mA and 0.741% difference compared with bare glass. As a result, the role of anti-glare in the substrate is to reduces the loss of sunlight reflected from the surface. In this study, therefore, AG structure on the solar cell was used to improve the efficiency of solar cell.