• Title/Summary/Keyword: 마이크로 구조 조작

Search Result 16, Processing Time 0.03 seconds

Manipulation of Micro-Structure by Self-Powered Bacteria (박테리아의 추진을 이용한 마이크로 구조의 조작)

  • Kim, Min-Jun;Byun, Do-Young;Kumar, Vijay;Breuer, Kenneth S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1433-1436
    • /
    • 2008
  • Flagellate bacteria such as Escherichia coli or Serratia marcescens possess a remarkable motility system based on a reversible rotary motor. We have employed S. marcescens as microactuators in low Reynolds number fluidic environments to move a larger engineering element around. Microstructures fabricated using conventional microfabrication techniques are blotted on the swarm plate, which leaves a bacterial monolayer on the surface of the microstructure. We have investigated microstructures powered by bacteria to determine how cell orientation on the microstructure surface relates to the swarming patterns as well as how the orientation is affected by the blotting process. This study will help to refine directional control of bacterial transporters by exploiting bacterial sensory mechanisms.

  • PDF

구조공학 교육과 퍼스널 컴퓨터

  • 김상식
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.5-8
    • /
    • 1988
  • 퍼스널 컴퓨터는 마이크로컴퓨터의 계열에 속하나 기존의 기계에 사용을 위주로한 마이크로 컴퓨터에 비하여 기능과 용도가 향상된 것으로, 고급언어에 의한 프로그램이 가능하고 범용성이 있으며 조작이 쉬워 여러방면에서 널리 쓰이고 있다. 이렇게 사용이 손쉬워진 퍼스널 컴퓨터를 대학의 구조공학 교육과 연구에 어떻게 활용할 수 있는가 하는 문제는 대학에서는 구조공학 교육과 퍼스널 컴퓨터의 적용범위를 보다 깊이 통찰함으로써 가능할 것이다. 따라서 여기에서는 퍼스널 컴퓨터의 하드웨어와 소프트웨어의 구성이나 기능면에서의 특성을 고찰하고 이들을 구조공학 교육에 이용하는 방안들을 검토하기로 한다.

  • PDF

Organization of Microsystem and Its Applications (마이크로 시스템의 구성 및 응용)

  • 최준림
    • 전기의세계
    • /
    • v.42 no.10
    • /
    • pp.10-13
    • /
    • 1993
  • 마이크로 시스템은 감각 기관, 지능 기관, 운동 기관으로 구성되어 있으며 운동기관에 해당하는 액튜에이터의 마이크로화를 통하여 마이크로 시스템은 실현될 수 있다. 마이크로 시스템의 한예로 대두되고 있는 마이크로 로봇의 구현을 위해서는 마이크로 세계에서의 역학점 고려, 감각, 지능 기관의 극소화, 마이크로 부품 조립기술의 발달, 에너지 전달의 효율화 통신 기능 부여 등의 장벽을 극복해야 한다. 마이크로 시스템의 실용화는 큰 구동력을 필요로 하지 않는 미세광학, 세포 또는 고분자의 조작, STM 등의 미세 과학분야에 먼저 이루어질 것으로 예상하며 곧 구동력을 필요로 하는 국부 수술의 시행, 생체의 정보 취득, 인간의 범위가 닿지 않는 구조물의 결함 보수, 정보전용 로봇 등으로 전파되리라 본다.

  • PDF

Development of Remote Control Transmission based on an One-chip Microcomputer in Speed Sprayer asture Plant Genetic Resources (원칩 마이크로 컴퓨터(MCS-51)를 이용(移用)한 스피드 스프레이어의 원격조종(遠隔操縱) 변속장치(變速裝置) 개발(開發))

  • Jang, Ik Joo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.8
    • /
    • pp.107-113
    • /
    • 1990
  • This study was attempted to develop a remote controllable speed sprayer in order to protect an operator from agricultural chemicals. For the purpose of remote controllable transmission was developed by using one chip microcomputer. The following results could be summarized in this study. 1. Remote controllable transmission developed had not made even a single mistake during the test performed 100 times repeat. Thus, it could that this machine was very accurate. 2. One chip microcomputer was made by machine language and its was with in 3 sec's which was the same as human did. 3. One chip microcomputer which was used in the experiment could be widely used to automation of agricultural machinery, since it is smaller and chiper than any other similar ones such as personal computer, lap tap, one board computer. 4. Since, farm tractor has the same type of transmission as this system, it also could be adapted to farm tractors. 5. In this experiment, transmission lever was remote controll were designed to operate simultaneously. Thus, this system developed was more complicate than conventional system. However, by removing this transmission lever and by mounting the remote controll system at the speed sprayer, it would be higher and easier to handle than the conventional one.

  • PDF

Fabrication of Microstructures for Conductive Polymer Actuators Using MEMS Process (MEMS 공정을 이용한 전도성 고분자 액추에이터용 마이크로 구조물의 제작)

  • Lee, Seung-Ki;Jung, Seng-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.156-163
    • /
    • 2003
  • Polypyrrole microactuators have been fabricated by the standard surface micromachining method combined with the electropolymerization of polypyrrole. The fundamental structure to verify the feasibility of the fabrication process is polypyrrole cantilever. Based on these process, polypyrrole grippers and valves for the manipulation of the cell have been fabricated. Grippers have the structure of bone and muscle which are rigid polymers and polypyrrole, respectively. Valves have the assembled structure of channels with polypyrrole cantilevers. The proposed fabrication process and structures are expected to be used for bio-related applications, for example, the cell manipulation.

Generation of colloidal periodic structure by using optical tweezers (광집게를 이용한 콜로이드 주기 구조의 형성)

  • 김현익;임강빈;주인제;오차환;송석호;김필수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.16-17
    • /
    • 2003
  • 수 십 ∼ 수 마이크로 크기의 미세 입자에 강하게 집속된 빔을 산란시키게 되면 입자들은 운동량의 변화에 따라 광의 초점부근에서 포획되는 힘을 받게 된다. 이런 힘은 scattering force와 gradient force로 구분할 수 있고, Optical tweezers는 광의 gradient force를 이용하여 미세입자를 포획하고 조작하는 기술이다. 광에 의해 물리적인 접촉 없이 입자를 포획할 수 있다는 사실로부터 optical tweezers는 생물학을 비롯한 많은 분야에서 유용한 도구로 사용되어지고 있다. (중략)

  • PDF

Dielectrophoresis for Control of Particle Transport: Theory, Electrode Designs and Applications (입자 이동 제어를 위한 유전영동: 이론, 전극 구조 및 응용분야)

  • Lee, Minji;Kim, Ji-Hye;Koo, Hyung-Jun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.149-163
    • /
    • 2019
  • Under non-uniform electric field, a directional force along the electric field gradient is applied to matter having permanent or induced dipoles. The transport of particles by the directional force is called dielectrophoresis (DEP). Since the strength and direction of the DEP force depend on parameters, such as permittivity and conductivity of particles and surrounding media, and frequency of the applied AC electric field, particle can be precisely manipulated by controlling the parameters. Moreover, unlike electrophoresis, DEP can be applied to any particles where dipole is effectively induced by electric field. Such a DEP technique has been used in various fields, ranging from microfluidic engineering to biosensor and microchip research. This paper first describes the fundamentals of DEP, and discusses representative microelectrode designs used for DEP study. Then, exemplary applications of DEP, such as separation, capture and self-assembly of particles, are introduced.

The Design of 32 Bit Microprocessor for Sequence Control Using FPGA (FPGA를 이용한 시퀀스 제어용 32비트 마이크로프로세서 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.431-441
    • /
    • 2003
  • This paper presents the design of 32 bit microprocessor for a sequence control using a field programmable gate array(FPGA). The microprocessor was designed by a VHDL with top down method, the program memory was separated from the data memory for high speed execution of sequence instructions. Therefore it was possible that sequence instructions could be operated at the same time during the instruction fetch cycle. In order to reduce the instruction decoding time and the interface time of the data memory interface, an instruction code size was implemented by 32 bits. And the real time debug operation was implemented for easeful debugging the designed processor with a single step run, PC break point run, data memory break point run. Also in this designed microprocessor, pulse instructions, step controllers, master controllers, BM and BCD type arithmetic instructions, barrel shift instructions were implemented for sequence logic control. The FPGA was synthesized under a Xilinx's Foundation 4.2i Project Manager using a V600EHQ240 which contains 600,000 gates. Finally simulation and experiment were successfully performed respectively. For showing good performance, the designed microprocessor for the sequence logic control was compared with the H8S/2148 microprocessor which contained many bit instructions for sequence logic control. The designed processor for the sequence logic showed good performance.

Atomic Force Microscopy(AFM) based Single Cell Manipulation and High Efficient Gene Delivery Technology (원자간력 현미경을 이용한 단일세포 조작 및 고효율 유전자 도입기술)

  • Han, Sung-Woong;Nakamura, Chikashi;Miyake, Jun;Kim, Woo-Sik;Kim, Jong-Min;Chang, Sang-Mok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.538-545
    • /
    • 2009
  • The principle and application of a scanning probe microscopy(SPM) are reviewed briefly, and a low-invasive single cell manipulation and a gene delivery technique using an etched atomic force microscopy(AFM) probe tip, which we call a nanoneedle, are explained in detail. The nanoneedle insertion into a cell can be judged by a sudden drop of force in a force-distance curve. The probabilities of nanoneedle insertion into cells were 80~90%, which were higher than those of typical microinjection capillaries. When the diameter of the nanoneedle was smaller than 400 nm, the nanoneedle insertion into a cell over 1 hour had almost no influence on the cell viability. A highly efficient gene delivery and a high ratio of expressed gene per delivered DNA compared the conventional major nonviral gene delivery methods could be achieved using the gene modified nanoneedle.