• Title/Summary/Keyword: 마이크로히터

Search Result 74, Processing Time 0.026 seconds

Thermo-Optically Tunable Filter Using Evanescent Field Coupling Between Side-Polished Polarization Maintaining Fiber and Polymer Planar Waveguide (측면 연마된 편광유지 광섬유와 폴리머 평면도파로 사이의 소산장 결합을 이용한 열 광학 가변 필터)

  • 윤대성;김광택
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • We have demonstrated a tunable Inter based on an asymmetric directional coupler made of a side-polished polarization maintaining fiber coupled with a polymer planar waveguide. The thermo-optic effects of the polymer planar waveguide induced by a micro-strip heater placed on the top layer of the device leads to shift of resonance wavelength of the coupler. The fabricated device exhibited wide tunable range exceeding 230 nm with 720 ㎽ of applied electrical power.

Design and Fabrication of microheaters based oil polycrystalline 3C-SiC with large uniform-temperature area for high temperature (다결정 3C-SiC 기반으로 한 넓은 범위에서 균일한 온도 분포를 갖는 초고온용 마이크로 히터 설계 및 제작)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.214-215
    • /
    • 2009
  • This paper presents the fabrication and characteristics of microheaters, built on AlN(0.1 um)/3C-SiC(1 um) suspended membranes. Pt was used as microheater and temperature sensor materials. The results of simulated are shown that AlN/3C-SiC membrane has more large uniform-temperature area than $SiO_2$/3C-SiC membrane. Resistance of temperature sensor and power consumption of microheater were measured and calculated. Pt microheater generates the heat of about $550^{\circ}C$ at 340 mW and TCR of Pt temperature sensor is about 3188 ppm/$^{\circ}C$.

  • PDF

Design on ultra low power consumption microhotplates based on 3C-SiC for high temperatures (고온용 저전력소비형 3C-SiC 마이크로 히터의 설계)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.385-386
    • /
    • 2008
  • This paper reports the design of the ultra low power consumption microhotplates for high temperatures. The microhotplates consisting of a platinum-based heating element on AlN/poly 3C-SiC layers were designed. The microhotplate is a $600\times600{\mu}m^2$ square shaped membrane made of $1{\mu}m$ thick ploy 3C-SiC suspended by four legs. The microhotplate was compared with $Si_3N_4/SiO_2/Si_3N_4$(NON) structure microhotplate by COMSOL simulation system. Thermal uniformity, power consumption and thermal characterizations of microhotplates based on 3C-SiC thin film are better than microhotplates with NON structure.

  • PDF

Micro Heater Trimming using UV Laser (UV레이저를 이용한 마이크로 히터 트리밍)

  • Yoo, Seungryeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.36-40
    • /
    • 2017
  • In this paper, a new method of laser trimming of thick film heater is studied. Various laser waves (IR, Green, UV) are used to ablation the heater and the process parameters are also presented. For given initial printed resisters, the cutting length should be prepared to obtain the target resister value in advance. Therefore, the cutting model is very important. The well-known model was tested and proven that it is valid only within a certain range of cutting length. A new model is proposed for a wide range of resister laser trimming. The cutting lengths and resister variation was obtained and formulated. To verify the presented method, the cutting lengths of each resister are calculated for various target resister value and laser trimming using UV is conducted.

  • PDF

A study on the Temperature Control of Insulated Open-End Water Vessel (밑이 트인 단열수조의 온도제어에 관한 연구)

  • Han, Seung-Hun;Bae, Cherl-O;Ahn, Byong-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1097-1103
    • /
    • 2012
  • There are many fish farms being cultivated in the southwestern cost of South Korea. Because the farms cultivating use the basic method that inflow and circulate sea-water, slight negligence and bad design cause major negative impact on fish deaths. Also, the optimal temperature for each specie of fishes has already been proven to differ on each specie. Maintaining this environment, regardless of seasons, is very difficult and that requires research to develop. In this paper, basic characteristics of heat and mechanism of heat transfer are studied. Based on this, Open-end water vessel is designed and constructed using sandwich-insulation panels and simulated to store the heat in certain isolated space. This study confirmed that it is possible to keep constant temperature by this method, in large areas of water where it is insulated by heat insulator. and equipped with heater in Open-end water vessel where the other part is heated. The AC power controller maintains the constant temperature required and the temperature controller detects and displays the temperature by using the micro-processor.

Novel Fabrication and Testing of a Bubble-Powered Micropump (새로운 기포동력 마이크로펌프 제작 및 실험)

  • Jung, Jung-Yeul;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1196-1200
    • /
    • 2004
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. In this study, a bubble-powered micropump was fabricated and tested. The micropump consists of two-parallel micro line heaters, a pair of nozzle-diffuser flow controller and a 1 mm in diameter, 400 ${\mu}m$ in depth pumping chamber. The two-parallel micro line heaters with 20 ${\mu}m-width$ and 200 ${\mu}m-length$ were fabricated to be embedded in the silicon dioxide layer of a wafer which serves as a base plate for the micropump. The pumping chamber, the pair of nozzle-diffuser unit and microchannels including the liquid inlet and outlet port were fabricated by etching through another silicon wafer. A glass wafer (thickness of $525{\pm}15$ ${\mu}m$) having two holes of inlet and outlet ports of liquid serve as upper plate of the pump. Finally the silicon wafer of the base plate, the silicon wafer of pumping chamber and the glass wafer were aligned and bonded (Si-Si bonding and anodic bonding). A sequential photograph of bubble nucleation, growth and collapse was visualized by CCD camera. Clearly liquid flow through the nozzle during the period of bubble growth and slight back flow of liquid at the end of collapsing period can be seen. The mass flow rate was found to be dependent on the duty ratio and the operation frequency. As duty ratio increases, flow rate decreases gradually when the duty ratio exceeds 60%. Also as the operation frequency increases, the flow rate of the micropump decreases slightly.

  • PDF

Fabrication and Characteristics of ZnO/In Micro-sensor for detecting $NH_3$ gas ($NH_3$ 가스 감지용 ZnO/In 마이크로센서의 제작 및 특성)

  • Kim, Gwon-Tae;Lee, Yong-Sung;Kim, Dae-Hyun;Park, Hyo-Derk;Jeon, Choon-Bae;Ma, Tae-Young;Park, Ki-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2251-2253
    • /
    • 2000
  • MEMS기술을 이용하여 단층 실리콘 나이트라이드($Si_{3}N_4$) 다이아프램을 제조하고, 이 다이아프램상에 저항성 가열 진공증착법과 고주파 마그네트론 스퍼터링법을 이용하여 차례로 In막과 ZnO막을 증착하고, In의 도핑을 위해 열처리하여 $NH_3$ 가스 감지용 마이크로센서를 제작하였다. 감지막의 열처리온도에 따른 구조적 및 전기적 특성은 XRD, SEM, AFM, 4-point probe 및 Electrometer를 통하여 각각 조사하였다. 제작된 센서의 열처리온도와 인가전력에 따라 $NH_3$ 가스에 대한 감도, 선택성 및 시간응답 특성을 조사하였다. 감지막 두께 3000 ${\AA}$, 열처리온도 400$^{\circ}C$로 제조된 마이크로 센서가 히터 인가전력 366 mW에서 100 ppm의 $NH_3$ 가스농도에서 대하여 16 %, 350 ppm의 가스농도에서 대하여 23 %의 가장 우수한 감도를 나타내었다. 그러나 CO 가스 및 $NO_x$ 가스에 대한 감지특성은 관찰되지 않았다.

  • PDF

Fabrication and Electrical Insulation Property of Thick Film Glass Ceramic Layers on Aluminum Plate for Insulated Metal Substrate (알루미늄 판상에 글라스 세라믹 후막이 코팅된 절연금속기판의 제조 및 절연특성)

  • Lee, Seong Hwan;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • This paper presents the fabrication of ceramic insulation layer on metallic heat spreading substrate, i.e. an insulated metal substrate, for planar type heater. Aluminum alloy substrate is preferred as a heat spreading panel due to its high thermal conductivity, machinability and the light weight for the planar type heater which is used at the thermal treatment process of semiconductor device and display component manufacturing. An insulating layer made of ceramic dielectric film that is stable at high temperature has to be coated on the metallic substrate to form a heating element circuit. Two technical issues are raised at the forming of ceramic insulation layer on the metallic substrate; one is delamination and crack between metal and ceramic interface due to their large differences in thermal expansion coefficient, and the other is electrical breakdown due to intrinsic weakness in dielectric or structural defects. In this work, to overcome those problem, selected metal oxide buffer layers were introduced between metal and ceramic layer for mechanical matching, enhancing the adhesion strength, and multi-coating method was applied to improve the film quality and the dielectric breakdown property.

Temperature Measurement and Contact Resistance of Au Stud Bump Bonding and Ag Paste Bonding with Thermal Heater Device (Au 스터드 범프 본딩과 Ag 페이스트 본딩으로 연결된 소자의 온도 측정 및 접촉 저항에 관한 연구)

  • Kim, Deuk-Han;Yoo, Se-Hoon;Lee, Chang-Woo;Lee, Taek-Yeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • The device with tantalum silicide heater were bonded by Ag paste and Au SBB(Stud Bump Bonding) onto the Au coated substrate. The shear test after Au ABB and the thermal performance under current stressing were measured. The optimum condition of Au SBB was determined by fractured surface after die shear test and $350^{\circ}C$ for substrate, $250^{\circ}C$ for die during flip chip bonding with bonding load of about 300 g/bump. With applying 5W through heater on the device, the maximum temperature with Ag paste bonding was about $50^{\circ}C$. That with Au SBB on Au coated Si substrate showed $64^{\circ}C$. The difference of maximum temperatures is only $14^{\circ}C$, even though the difference of contact area between Ag paste bonding and Au SBB is by about 300 times and the simulation showed that the contact resistance might be one of the reasons.

Preparation and Characterization of Cobalt Silicide Films for Printing Heater (프린팅 히터용 코발트실리사이드 박막의 형성과 특성연구)

  • 장호정;노영규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.49-54
    • /
    • 2002
  • Cobalt silcides thin films were prepared on Poly-Si/$SiO_2$/Si substrates by Co metal depostion using E-beam evaporation method and rapid thermal annealing for the application of inkjet printing heater. The crystal phases and composition distributions of the films were investigated as functions of the rapid thermal annealing (RTA) temperatures (600~$900^{\circ}C$) and times (20~40 sec). The high temparature thermal stability was also investigated by the analysis of sheet resistance and crystalline properties. The stable $CoSi_2$ phases were obtained by the RTA annealing at $800^{\circ}C$ for 20 seconds showing $0.8 \Omega /\Box$ of sheet resitance. However, the sheet resistances were sharply increased at below $700^{\circ}C$ due to changes of crystalline phases. The temperature resistance coefficient of heating elements was found to be about $0.0014/^{\circ}C$, and the obtained cobalt silicided films can be applied to the printer heating elements.

  • PDF