• Title/Summary/Keyword: 마이크로터빈

Search Result 174, Processing Time 0.023 seconds

Development of Low NOx Combustor for 55kw Class Micro Gasturbine (55kW급 마이크로터빈용 저공해 연소기 개발)

  • Kim Hyung-Mo;Park Young-Il;Park Poo-Min;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.318-321
    • /
    • 2005
  • The design and performance test of a low NOx gas turbine combustor to be used in 55kW class micro-gasturbine engine was performed in KARI's combustion test facility. The combustor is reverse flow-can type for easy installation of injector and other parts and LNG is used as fuel. The performance targets are $99.5\%$ combustion efficiency, less 10ppm NOx, $30\%$ patten factor and $4\%$ pressure loss. Most of the performances required are satisfied.

  • PDF

Development of a 50kW Micro Gas Turbine Engine (50kW 마이크로 가스터빈 개발)

  • Kim, Sooyong;Park, MooRyong;Choi, Bumseok;Ahn, Kookyoung;Choi, SangKyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.314-319
    • /
    • 2002
  • Performance analysis and test of a 50kW micro gas turbine is carried out. The present study was initiated in 1996 by KIMM researchers to develope a 50kW class turbogenerator gas turbine engine for hybrid vehicle propulsion system. but with its low emission and compactness, it seemed that it can also be applied as a source of distributed power generation. In this study, general description of the KIMM's efforts to acquire performance test skills of the self-made 50kW micro gas turbine engine. At present, non-load performance test up to 615000 rpm was accomplished and is expected to make through 80,000 rpm by the end of year. Several revisions in design and manufacture were made during the course of experiments. The resulting outputs is thought to be valuable for the further refinement of the system for eventual commercialization of the product.

  • PDF

Development of Micro Turbine based on MEMS Technology (MEMS 기술을 이용한 마이크로 터빈의 개발)

  • 전병선;박건중;민홍석;김세준;송성진;주영창;민경덕
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.120-124
    • /
    • 2002
  • Microturbine refers to turbines on the scale of centimeters which can transmit power on the order of tens of Watts. Such devices can be used as propulsion or power generation devices for various military systems. An interdisciplinary team at Seoul National University has designed, and fabricated such a device, and this paper describes each phase. A commercial code has been used for design, and MEMS processes have been used for manufacturing. Finally, some preliminary test results are presented.

High Temperature Air Foil Bearings for Micro Turbine (마이크로 터빈용 고온 포일 베어링 개발)

  • Kim, Kyeong Su;Kim, Seung Woo;Lee, In
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.104-108
    • /
    • 2004
  • Micro turbine is an electric power generating system using a gas turbine whose rated power is under 300kW, and it is featured as a small, efficient. maintenance free and environment-friendly system. Air foil bearing has several advantages over conventional bearings for micro turbine because it is oilless and non-contact. Recently, air foil bearings for high temperature over $500^{\circ}C$ has been developed for the application of 65kW micro turbine system. In this paper, the development and current status are summarized in detail.

  • PDF

Performance Test of Centrifugal Compressor for Microturbine with Running Tip Clearance (운전 익단간극을 고려한 마이크로터빈 코어용 원심압축기의 성능특성 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Cha, Bong-Jun;Yang, Soo-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.411-418
    • /
    • 2004
  • Tip clearance of centrifugal compressor affects the performance. Larger tip clearance results in lower efficiency. What really affects the performance is the running tip clearance, not the cold tip clearance. When the compressor is operating, blade strain and the pressure difference between impeller backplate and hub affects the running tip clearance. This paper describes measured running tip clearance and its effects on the performance of centrifugal compressor. Cold tip clearance before operation was 0.4 mm and running tip clearance varied from 0.86 mm to 0.25 mm with impeller exit pressure. As the pressure at impeller exit increases, the routing tip clearance tends to decreases. The target running tip clearance for compressor at $100\%$ speed was 0.3 mm and it turned out to be exactly 0.30 mm from experiment.

  • PDF

Development of a 30 kW Hydrogen-Fueled Micromix Combustor for Research (연구용 30 kW 수소 전소 마이크로믹스 연소기 개발)

  • Seojun Ock;Minsu Kim;Suhyeon Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.72-81
    • /
    • 2023
  • Hydrogen-fueled gas turbines are a promising technology that can resolve the carbon dioxide emission issue as future aviation propulsion engines and carbon-free power generations. To achieve high efficiency and stability of gas turbines using 100% hydrogen as fuel, an innovative design of combustor systems is necessary to consider the characteristics of hydrogen, which are different from those of conventional hydrocarbon fuels. Micromix is a combustor design method, which aims to terminate the reaction quickly by intense mixing of fuel and air, consequently reducing NOx and increasing the stability. In this paper, we examine the principles and design process of micromix combustors as a pure-hydrogen combustion technology, and we introduce a design of a 30 kW micromix hydrogen combustor for research.

Analysis of Design and Operation Performance of Micro Gas Turbine : Part 2 - Variations in Engine's Operation and Performance Caused by Performance Degradation of Compressor and Turbine (마이크로 가스터빈 설계 및 운전 성능 분석 : 제2부 - 압축기와 터빈 성능저하에 의한 엔진 운전 및 성능변화)

  • Kim, Jeong Ho;Kim, Min Jae;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.30-35
    • /
    • 2015
  • This study analyzed the variations in the performance and operation of a 200 kW class micro gas turbine according to performance degradation of compressor and turbine. An in-house code, developed by the present authors and presented in the first part of these series of papers, were used for the analysis. The degradation of compressor and turbine were simulated by modifications in the their performance maps: mass flow rate, pressure ratio and efficiency were decreased from the reference values. Firstly, the variations in the operating conditions (air flow rate, pressure ratio) were predicted for the full load condition. Then, the same analysis were performed for a wide partial load operating range. The change in engine's performance (power output and efficiency) due to the component degradation was predicted. In addition, the change in the compressor surge margin, which is an important indicator for safe engine operation, was evaluated.

Development of the Educational Micro Gas Turbine Engine Performance Test System (교육용 마이크로 가스터빈 엔진 성능 시험장치 개발)

  • Kho, Seong-Hee;Ki, Ja-Young;Park, Mi-Young;Kong, Chang-Duk;Lee, Kyung-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.31-35
    • /
    • 2008
  • This test cell is developed to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation with this test data to the institutes or laboratories research and study gas turbine engine for academic purpose. The test cell is installed to monitor and collect real-time data as to temperature, pressure, thrust, fuel flow, and air flow etc. using by NI DAQ(Data acquisition)device and LabVIEW program based on 30lbf-micro turbojet engine.

  • PDF

Study of power generation used low pressure steam on small sacle waste incinerator (중소형폐기물소각설비의 폐증기를 활용한 저압발전에 관한 연구)

  • Jeon, Kuem-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.794-797
    • /
    • 2009
  • 중소형 폐기물 소각설비의 폐열보일러에서 생산되는 10 $kg/cm^2$미만의 저압증기를 이용한 증기터빈발전에서 증기의 건도를 높이이 위한 증기 전처리가 필수적이며, 건도를 증가시킨 증기를 이용하여 발전실험을 하였다. 본 연구에 적용된 증기터빈발전기는 마이크로 축류식 증기터빈으로 배압식을 채택하였으며, 증기터빈에 공급되는 증기압력의 증가에 따라 증기공급량, 발전량이 증가하였으며, 이에 따른 발전 효율은 설비의 효율에 따라 변하였다. 또한, 배압식 증기터빈의 경우, 공급.배기측의 증기 압력의 차이가 증가함에 따라 발전을 위한 증기 소비율이 감소하고 발전 효율이 증가함을 볼 수 있었다.

  • PDF

터빈 제어 기술 동향

  • 권욱현
    • 전기의세계
    • /
    • v.38 no.3
    • /
    • pp.51-58
    • /
    • 1989
  • 아날로그 EHC시스템이 도입된 이래 터빈 제어 시스템에서 속도와 부하 제어의 기본 기능은 크게 변화하지 않았다. 그러나 감시, 운용 등에 대한 요구가 복잡다양해지고 자동기동 등에 대한 요구가 증가함에 따라 보다 유연한 제어 시스템이 요구되고 있다. 게다가 기존의 기저부하를 담당하던 발전소들도 점차 변동부하를 담당할 필요가 생겼고 이를 위해서 터빈 제어시스템은 여러가지 다른 동작점에서도 운용할 수 있게 개수될 필요가 생겼다. 이는 또 터빈제어 시스템이 보일러 혹은 발전소의 다른 부분과 협조 운전을 할 수 있는 기능의 구비를 요구하였다. 이러한 여러가지 요구점들은 최근의 마이크로프로세서 기술에 의한 D-EHC 시스템으로 대부분 해결 가능한 것들이다, 앞에서 언급한 D-EHC의 여러가지 장점은 다양하고 복잡한 기능을 처리할 수 있는 터빈 제어시스템에 대한 요구를 충족시킬 것으로 있다는 점에서 D-EHC 시스템의 도입을 촉진시킬 것으로 보여진다. 게다가 아날로그 전자 장치에 대한 기술적 축적도가 디지탈 시스템에 대한 기술적 축적도에 비해 상대적으로 미흡한 우리나라의 실정을 생각할 때 D-EHC 시스템으로의 전환은 발전제어 시스템의 국산화에도 한결 유리하고 쉬운 길을 제공하리라고 생각된다.

  • PDF