• 제목/요약/키워드: 마이크로채널 히트싱크

검색결과 7건 처리시간 0.02초

등온 경계 조건을 가지는 마이크로채널 히트 싱크의 열성능 해석을 위한 평균 접근법 (Averaging Approach for Microchannel Heat Sinks Subjected to the Uniform Wall Temperature Condition)

  • 김동권;김성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1247-1252
    • /
    • 2004
  • The present paper is devoted to the modeling method based on an averaging approach for thermal analysis of microchannel heat sinks subjected to the uniform wall temperature condition. Solutions for velocity and temperature distributions are presented using the averaging approach. When the aspect ratio of the microchannel is higher than 1, these solutions accurately evaluate thermal resistances of heat sinks. Asymptotic solutions for velocity and temperature distributions at the high-aspect-ratio limit are alsopresented by using the scale analysis. Asymptotic solutions are simple, but shown to predict thermal resistances accurately when the aspect ratio is higher than 10. The effects of the aspect ratio and the porosity on the friction factor and the Nusselt number are presented. Characteristics of the thermal resistance of microchannel heat sinks are also discussed.

  • PDF

나노유체를 냉각유체로 사용하는 마이크로채널 히트 싱크의 냉각효율 (Cooling Performance of a Microchannel Heat Sink with Nanofluids)

  • 장석필
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.849-854
    • /
    • 2005
  • In this paper, the cooling performance of a microchannel heat sink with nano-particle-fluid suspensions ('nanofluids') is numerically investigated. By using theoretical models of thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion respectively, we investigate the temperature contours and thermal resistance of a microchannel heat sink with nanofluids such as 6nm copper-in-water and 2nm diamond-in-water. The results show that a microchannel heat sink with nanofluids has high cooling performance compared with the cooling performance of that with water, the classical coolant. Nanofluids reduce both the thermal resistance and the temperature difference between the heated microchannel wall and the coolant.

평균 접근법을 이용한 전자 장치 냉각용 마이크로 채널 히트 싱크에 대한 연구 (Study on the Averaging Approach for Microchannel Heat Sinks for Electronics Cooling)

  • 김동권;김성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1430-1435
    • /
    • 2004
  • The present paper is devoted to the modeling based on an averaging approach for microchannel heat sinks. Firstly, analytic solutions for velocity and temperature distributions for low-aspect-ratio microchannel heat sinks are presented by using the averaging approach. When the aspect ratio of the microchannel is smaller than 1, analytic solutions accurately evaluate thermal resistances of heat sinks while the previous model cannot predict thermal resistances. Secondly, asymptotic solutions for velocity and temperature distributions at low-aspect-ratio limit and at high-aspect-ratio limit are presented by using the scale analysis. Asymptotic solutions are very simple, but shown to predict thermal resistances accurately.

  • PDF

온도 프로파일 가시화를 통한 프랙탈 구조 마이크로채널 히트싱크의 열수력학적 특성 최적화 (Direct Visualization of Temperature Profiles in Fractal Microchannel Heat Sink for Optimizing Thermohydrodynamic Characteristics)

  • 이한솔;곽노균
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.79-84
    • /
    • 2024
  • As microchips' degree of integration is getting higher, its cooling problem becomes important more than ever. One of the promising methods is using fractal microchannel heat sink by mimicking nature's Murray networks. However, most of the related works have been progressed only by numerical analysis. Perhaps such lack of direct experimental studies is due to the technical difficulty of the temperature and heat flux measurement in complex geometric channels. Here, we demonstrate the direct visualization of in situ temperature profile in a fractal microchannel heat sink. By using the temperature-sensitive fluorescent dye and a transparent Polydimethylsiloxane window, we can map temperature profiles in silicon-based fractal heat sinks with various fractal scale factors (a=1.5-3.5). Then, heat transfer rates and pressure drops under a fixed flow rate were estimated to optimize hydrodynamic and thermal characteristics. Through this experiment, we found out that the optimal factor is a=1.75, given that the differences in heat transfer among the devices are marginal when compared to the variances in pumping power. This work is expected to contribute to the development of high-performance, high-efficiency thermal management systems required in various industrial fields.

2상 마이크로 채널 히트 싱크에서의 유동 비등 열전달에 관한 연구 (Study on flow boiling heat transfer in two-phase micro-channels heat sink)

  • 최용석;임태우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권7호
    • /
    • pp.702-708
    • /
    • 2015
  • 본 연구에서는 FC-72를 작동 유체로 사용하여 이상 유동 비등에 관한 실험을 수행하였다. 마이크로 채널은 깊이 0.2mm, 폭 0.45mm, 길이 60mm 그리고 채널의 개수는 15개로 구성되었다. 실험은 질량유속과 열유속 각각 $200-400kg/m^2s$, $5.6-49.0kW/m^2$ 범위와 증기 건도 0.02-0.93 범위에서 수행되었다. 실험 결과에 따르면 낮은 건도(x<0.2)영역에서는 핵비등에 의한 열전달이 지배적으로 작용하며, 그 이상의 증기 건도 영역에서는 핵비등과 강제 대류 비등의 영향이 복합적으로 작용하는 것으로 나타났다. 핵비등과 강제 대류 비등은 각각 비등수와 대류수에 관한 함수로 표현할 수 있으며, 실험에서 얻어진 열전달 계수는 기존의 상관식에 의한 열전달 계수와 비교하였다.

다공성 매질과 비투과성 벽면 사이의 경계면에 대한 열적 경계 조건 (On the Thermal Boundary Conditions at the Interface Between the Porous Medium and the Impermeable Wall)

  • 김덕종;김성진
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1635-1643
    • /
    • 2000
  • The present work investigates a heat transfer phenomenon at the interface between a porous medium and an impermeable wall. In an effort to appropriately describe the heat transfer phenomenon at the interface, the heat transfer at the interface between the microchannel heat sink, which is an ideally organized porous medium, and the finite-thickness substrate is examined. From the examination, it is clarified that the he heat flux distribution at the interface is not uniform for the impermeable wall with finite thickness. On the other hand, the first approach, based on the energy balance for the representative elementary volume in the porous medium, is physically reason able. When the first approach is applied to the thermal boundary condition, and additional boundary condition based on the local thermal equilibrium assumption at the interface is used. This additional boundary condition is applicable except for the very th in impermeable wall. Hence, for practical situations, the first approach in combination with the local thermal equilibrium assumption at the interface is suggested as an appropriate thermal boundary condition. In order to confirm our suggestion, convective flows both in a microchannel heat sink and in a sintered porous channel subject to a constant heat flux condition are analyzed. The analytically obtained thermal resistance of the microchannel heat sink and the numerically obtained overall Nusselt number for the sintered porous channel are shown to be in close agreement with available experimental results when our suggestion for the thermal boundary conditions is applied.

다공성 매질에서 Local Thermal Equilibrium에 관한 연구 (Study on Local Thermal Equilibrium in a Porous Medium)

  • 장석필;김성진
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1172-1182
    • /
    • 2002
  • In the present study a general criterion for local thermal equilibrium is presented in terms of parameters of engineering importance which include the Darcy number, the effective Prandtl number of fluid, and the Reynolds number. For this, an order of magnitude analysis is performed for the case when the effect of convection heat transfer is dominant in a porous structure. The criterion proposed in this study is more general than the previous criterion suggested by Carbonell and Whitaker, because the latter is applicable only when conduction is the dominant heat transfer mode in a porous medium while the former can be applied even when convection heat transfer prevails. In order to check the validity of the proposed criterion for local thermal equilibrium, the forced convection phenomena in a porous medium with a microchanneled structure subject to an impinging jet are studied using a similarity transformation. The proposed criterion is also validated with the existing experimental and numerical results for convection heat transfer in various porous materials that include some of the parameters used in the criterion such as a microchannel heat sink with a parallel flow, a packed bed, a cellular ceramic, and a sintered metal. It is shown that the criterion presented in this work well-predicts the validity of the assumption of local thermal equilibrium in a porous medium.