• Title/Summary/Keyword: 마이크로유동

Search Result 327, Processing Time 0.02 seconds

Stokes Flow Through a Microchannel with Projections of Constant Spacing (일정 간격의 돌출부를 갖는 마이크로채널 내의 스톡스 유동 해석)

  • Son, JeongSu;Jeong, Jae-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.335-341
    • /
    • 2015
  • In this study, we analyzed a two-dimensional Stokes flow through a microchannel containing projections with constant spacing attached to each wall. The projections on the top and bottom walls were semi-circular in shape, with in-phase locations. By considering the periodicity and symmetry of the flow, the eigenfunction expansion and least squared error method were applied to determine the stream function and pressure distribution. For some typical radius and spacing values, the streamline patterns and pressure distributions in the flow field are shown, and the shear stress distributions on the boundary walls are plotted. In addition, the average pressure gradients in the microchannel are also calculated and shown with the radius and spacing of the projections. In particular, the results for the case of extremely small gaps between the projections on the top and bottom walls are in good agreement with the lubrication results.

Experimental Study on Characteristics of Micro-Supersonic Jet Flows (마이크로 초음속 제트유동 특성에 관한 실험적 연구)

  • Kim, Jong-Hun;Bang, Jin-Young;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.774-779
    • /
    • 2008
  • An experimental study on the micro-supersonic jet flow fields has been carried out. A sonic nozzle of 440 ${\mu}m$-exit diameter and a Laval nozzle of 800 ${\mu}m$ exit diameter with the nozzle exit Mach number 2.0 were fabricated by stretching a micro Pyrex glass tube for the present experiments. Schlieren flow visualization and Pitot pressure distribution of the jet flow field were obtained. Representative characteristics of the jet flow fields such as, supersonic length, jet core length, similarity of the velocity field, and jet spreading rates, have been observed. All the results were compared to previous observations of larger supersonic jets of higher Reynolds numbers, and it was found that overall characteristics of the micro supersonic jet are qualitatively similar as those of the higher Reynolds number jets, except the jet core length and the jet spreading rate.

In situ Microfluidic Method for the Generation of Uniform PEG Microfiber (PEG 마이크로 섬유 제조를 위한 마이크로플루이딕 제조방법)

  • Choi, Chang-Hyung;Jung, Jae-Hoon;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.470-474
    • /
    • 2010
  • In this study, we presents a simple microfluidic approach for generating uniform Poly(ethylene glycol)(PEG) microfiber. Elongated flow pattern of monomer induced by sheath flow of immiscible oil as continuous phase is generated in Y-shape junction and in situ polymerization by UV exposure. For uniform microfiber, we investigate the optimized flow condition and draw phase diagram as function of Ca and Qd. At the region for stable elongated flow pattern, the microfiber generated in microfluidic chip is very uniform and highly reproducible. Importantly, the thickness of microfibers can be easily controlled by flow rate of continuous and disperse phase. We also demonstrate the feasibility for biological application as encapsulating FITC-BSA in PEG microfiber.

Performance Evaluation of Micro-nozzle Using Cold Gas Propulsion System (냉가스 추진장치를 이용한 마이크로 노즐의 성능평가)

  • Jung, Sung-Chul;Kim, Youn-Ho;Oh, Hwa-Young;Myong, Rho-Shin;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.42-49
    • /
    • 2007
  • In this study, we analyzed flow characteristics of micro-nozzles for basic research to develop micro propulsion system. Cold gas propulsion system was used, and micro-nozzles having nozzle throat diameters of 1.0, 0.5, 0.25 mm were fabricated with EDM method. Thrust was measured through the use of plate-spring and strain gage based thrust measurement system, and flow characteristics of micro-nozzles were analyzed under ambient condition and vacuum condition. We used argon and nitrogen gases as propellant, and compared experimental results with CFD analysis. From the result, we verified the flow losses of viscosity and back-pressure caused by minimization of nozzle.

PIV Measurements of the Pressure Driven Flow Inside a T-Shaped Microchannel Junction (T헝 마이크로채널 연결부 압력구동 유동의 PIV계측)

  • Choi Jayho;Lee In-Seop
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • A custom micro-PIV optics assembly has been used to measure the flow fold inside a T-junction of a microchannel. The micro-PIV system consists of microscope objectives of various magnifications, a dichroic cube, and an 8-bit CCD camera. Fluorescent particles of diameters 620 nm have been used with a Nd:YAG laser and color filters. A programmable syringe pump with Teflon tubings were used to inject particle-seeded distilled water into the channel at flow rates of 2.0, 4.0, 6.0 mL/hr. The micro-channels are fabricated with PDMS with a silicon mold, then O$_{2}$ -ion bonded onto a slide glass. Results show differences in flow characteristics and resolution according to fluid injection rates, and magnifications, respectively. The results include PIV data with vector-to-vector distances of 2 $\mu$m with 32 pixel-square interrogation windows at 50$\%$ overlap.

  • PDF

Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator (마이크로 엑츄에이터의 설계변수에 따른 유동특성 해석)

  • Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.605-612
    • /
    • 2016
  • A numerical analysis was performed on the effect of the design parameters of a bubble jet type microactuator on its liquid flow characteristics. The numerical models included the ink flow from the reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of the refilling process. Because the bubble behavior is a very important parameter for the overall actuator performance, the bubble growth and collapse phenomena in an open pool were simulated in the present study. The drop ejection and refill process were numerically predicted for various geometries of the nozzle, chamber, and restrictor of the bubble jet microactuator. The numerical results from varying the design parameters can help with predicting the performance and optimizing the design of a microactuator.

Investigation of Bubble Behavior in Rectangular Microchannels for Different Aspect Ratios (다른 세장비의 사각 마이크로채널 내의 기포 거동에 관한 연구)

  • Choi, Chi-Woong;Yu, Dong-In;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.471-479
    • /
    • 2010
  • The adiabatic two-phase flow in single rectangular microchannels was studied for different aspect ratios. The working fluids were liquid water and nitrogen gas. The hydraulic diameters of the rectangular microchannels were 490, 322, and $143\;{\mu}m$, and the widths of the microchannels were around $500\;{\mu}m$. The two-phase flow pattern was visualized using a high-speed camera and a long-distance microscope. This study was focused on bubble flow regimes. From the visualized images, the bubble velocity, bubble length, number of bubbles, and void fraction were evaluated. Further, the pressure drop in a single bubble was evaluated by using a unit cell model. The bubble velocity is proportional to the superficial velocity. Further, the relationship between the void fraction and the volumetric quality is linear. The pressure drop in a single elongated bubble is strongly related to the aspect ratio. Finally, the new correlation about the pressure drop of a single elongated bubble in the rectangular microchannel was proposed.