• Title/Summary/Keyword: 마이크로스트립안테나

Search Result 819, Processing Time 0.028 seconds

Optimized Design of T-Shaped Microstrip Antenna with Various Dimensions (T형 마이크로스트립 안테나의 면적 비에 따른 최적 설계)

  • Kim, Jin-Bok;Lee, Joong-Geun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.5
    • /
    • pp.53-59
    • /
    • 2010
  • There are various types of antenna fed method; coaxial probe, coupling, parasitic elements, and impedance matching. In this paper, the fed method of the proposed antenna is microstrip line type. The high frequency structure simulator (HFSS) is used to analyze the characteristics of the T-shaped microstrip antenna with various patch dimensions. In comparison with the basic microstrip antenna, this proposed T-shaped microstrip antenna with 40.38 % of patch dimensions has the optimum characteristics of resonant frequency, return loss, and radiation pattern at 2.0 GHz band.

다차원 패턴기술을 이용한 광대역 마이크로스트립 안테나 설계

  • 이호준;박규호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.226-229
    • /
    • 2003
  • 본 논문은 Wireless LAN 주파수 대역$(5725\~5825\;MHz)$에서의 다차원패턴기술(Photonic Band Gap : PBG)을 이용한 Yagi-Uda 안테나와 결합하여 광대역 마이크로스트립 패치 안테나를 구현 하였으며, PBG Cell을 이용한 안테나와 이용하지 않은 안테나를 비교 분석하였다. PBG 구조를 적용한 안테나에서의 대역폭이 약 30 MHz 정도 더 넓게 나왔으며, 안테나의 이득은 -1dB정도 더 낮게 나왔는데 이는 Ground 면에 2차원적인 PBG Cell을 적용한 효과 때문으로 분석된다.

  • PDF

A Broadband U-Slot Microstrip Antenna (광대역 특성을 갖는 U-슬롯 마이크로스트립 안테나)

  • 홍재표;이광호;김종규;이창순
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.6-11
    • /
    • 2001
  • In this paper, the aperture-coupled U-slot microstrip patch antenna is studied for the bandwidth improvement. The aperture is used as a mechanism for coupling the radiating element to the microstrip feedline, and the aperture-coupled configuration provides the advantage of isolating spurious feed radiation by the use of common ground plane. Experimental results such as return loss, VSWR, radiation pattern and gain measurements are presented on the aperture-coupled U-slot microstrip patch antenna. The impedance bandwidth (VSWR≤2) of the antenna is 6.4% centered at 2.35GHz, and the average gain is 5.3 dBi.

  • PDF

Characteristics of Microstrip Array Antenna (마이크로 스트립 배열 안테나 특성 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1281-1286
    • /
    • 2012
  • In the information age, internet was developed from the wired access to the wireless Internet access. When a surge in demand for wireless Internet access, efficiency and performance of 2.4GHz band which leads to saturation of the communication was significantly fall. in this paper, the U-slot microstrip array antenna in the 5 GHz band have been studied to improve the drawback of a narrow bandwidth of the T-slot micro strip antenna. The characteristics of single antenna and array antenna was investigated to obtain the optimum frequency properties. The optimal U-slot microstrip array antenna possibility was confirmed.

A Novel Feed Structure for a Broadband Microstrip Circular Slot Antenna (광대역 마이크로스트립 원형 슬롯 안테나를 위한 새로운 급전 구조)

  • 서영훈;박익모;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.948-957
    • /
    • 2001
  • We proposed a novel feed structure for a broadband circular slot antenna. The proposed antenna has a circular slot, a radiating element, and a novel microstrip feed structure which is composed of a 50 Ω microstrip feedline and a circular-shaped microstrip patch. This antenna is analyzed and optimized by using the finite difference time domain (FDTD) method. The impedance bandwidth of optimized antenna is 1.94 octave that is much broader than the conventional microstrip slot antennas.

  • PDF

Microstrip Antenna for Satellite Broadcasting Receptions Based on the Sierpinski Equilateral Triangular Patch and SSFIP structures (시에핀스키 프랙탈 패치 구조를 가지고 SSFIP 구조에 의한 위성방송 수신용 마이크로스트립 안테나)

  • 심재륜
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.49-52
    • /
    • 2003
  • A microstrip array antenna is designed and tested for satellite broadcasting receptions. The Sierpinski equilateral triangular patch and SSFIP(slot-strip-foam-inverted patch) structures are used. This 1$\times$3 Sierpinski equilateral triangular patch antenna is extended to 8$\times$2 array antenna for satellite broadcasting receptions. The measurement results of the reflection coefficients and the radiation patterns of the manufactured array antenna show good agreements with the simulation results.

  • PDF

Optimized Design of Wideband Microstrip Slot Antenna with Reverse L-shaped Feedline (역 L-형 급전구조를 갖는 광대역 마이크로 스트립 슬롯 안테나의 최적화 설계)

  • 장용응;신호섭
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.354-358
    • /
    • 2000
  • T-모양의 급전구조를 갖는 마이크로스트립 슬롯 안테나는 정합을 쉽게 이룰 수 있고, 대역 폭이 기존의 슬롯을 가로지르는 급전구조에 비하여 넓었다. 본 논문에서는 역 L-형 마이크로스트립 급전구조를 제안하여 FDTD(Finite Difference Time Domain)법으로 해석하여 안테나를 최적화 설계하였다. 슬롯 폭이 16 mm일 때, 전압 정재파비가 2.0 이하인 조건에서 대역폭은 2.3 GHz를 중심으로 약 48 % 정도의 광대역 특성을 얻었다. 제안된 급전구조는 기존의 슬롯 가로지르는 급전구조의 복사 저항보다 매우 낮았다. 또한 역 L-형 급전구조의 대역폭 특성을 기존의 급전구조의 슬롯릇 안테나들과 비교하였다.

  • PDF

Characteristics of UHF Antenna with microstrip structure (UHF 대역용 마이크로 스트립 안테나 특성)

  • Park, Yong-Wook
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.5
    • /
    • pp.217-222
    • /
    • 2008
  • The characteristics of UHF antenna with microstrip structure was studied. Design parameters as center frequency, band width, and VSWR by slot length, stub was analyzed by HFSS simulator. UHF antenna with microstrip structure was fabricated using FR4_epoxy substrate of 4.4 dielectric constant.

  • PDF

Wideband Stacked Microstrip Antenna with Rectangular and Triangular Parasitic Patches for 860MHz Band (직사각형 및 삼각형 기생패치를 이용한 860MHz 대역 광대역 적층 마이크로스트립 안테나)

  • Ko, Jin-Hyun;Kim, Gun-Kyun;Rhee, Seung-Yeop;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.874-879
    • /
    • 2016
  • A wideband stacked patch antenna with parasitic elements, rectangular and triangle shaped patches, is proposed. Two different shaped parasitic elements are placed in the above of main rectangular microstrip patch antenna in order to achieve wide bandwidth for 860 MHz band. Coupling between the main patch and parasitic patches is realized by thick air gap. The gap and locations of parasitic patches are found to be the main factor of the wideband impedance matching. The proposed antenna is designed and fabricated on a ground plane with small size of $119mm{\times}109mm$ for application of compact transceivers. The fabricated antenna on an FR4 substrate shows that the minimum measured return loss is below -11.68dB at 824 MHz and an impedance band of 818~919 MHz(11.7%) at 10dB return loss level. The measured radiation patterns are similar to those of a conventional patch antenna with maximum gain of 2.11 dBi at 824 MHz.

Design of Stacked Microstrip Antennal for DBS Reception (DBS 수신용 적층된 마이크로스트립 안테나 설계)

  • 전주성;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.618-627
    • /
    • 1999
  • In this paper, we have researched designing a microstrip antenna, which will be replaced for a parabolic antenna. A microstrip antenna has been used in extremely limited field, but if it is applied to practical life like a DBS receiving antenna, we expect that it will be used in various way. First of all, if we use a microstrip antenna for a DBS receiving antenna, it should be guaranteed characteristics of broadband frequency. Therefore, the goal of this paper is designing an antenna which guarantees broadband frequency band for a DBS reception. Also, experiment with Koreasat, we have researched the propriety of this antenna for the DBS receiving antenna.

  • PDF