• Title/Summary/Keyword: 마이크로스트립라인

Search Result 159, Processing Time 0.023 seconds

A High Power SP3T MMIC Switch (고출력 SP3T MMIC 스위치)

  • 정명득;전계익;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.782-787
    • /
    • 2000
  • The monolithic single-pole three-throw(SP3T) GaAs PIN diode switch circuit for the broadband and high power application was designed, fabricated and characterized. To improve the power handling capability, buffer layers of the diode employ both low temperature buffer and superlattice buffer. The diode show the breakdown voltage of 65V and turn-on voltage of 1.3V. The monolithic integrated switch employed microstrip lines and backside via holes for low-inductance signal grounding. The vertical epitaxial PIN structure demonstrated better microwave performance than planar type structures due to lower parasitics and higher quality intrinsic region. As the large signal characteristics of the fabricated SP3T MMIC switch, the insertion loss was measured less than 0.6dB and the isolation better than 50dB when the input power was increased from 8dBM to 32dBm at 14.5GHz.

  • PDF

A Compact C-Band Semi-Lumped Lowpass Filter with Broad Stopband Using a Chip Inductor (칩 인덕터를 사용하여 광대역 저지 특성을 갖는 소형 C-밴드 Semi-Lumped 저역 통과 여파기)

  • Jang, Ki-Eon;Lee, Gi-Moon;Kim, Ha-Chul;Choi, Hyun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1359-1364
    • /
    • 2012
  • The C-band semi-lumped lowpass filter with broad stopband and compact size characteristic using chip inductor is proposed. To provide an additional attenuation pole in stopband by SRF, a separable inductor is added to proposed structure, and it has broad stopband characteristic. The third order elliptic function lowpass filter with chip inductor(L: 9.1 nH, SRF: 5.5 GHz, Q: 25) has insertion loss of 0.38 dB, cutoff frequency of 920 MHz, broad stopband(below 20 dB) of 1.43~7.8 GHz and the size is reduced 37.4 % compared to distributed inductor.

Heat Resistant Electromagnetic Noise Absorber Films Using Poly(amide imide)/Soft Magnet Composite (내열성 전자기 노이즈 흡수 폴리(아미드-이미드)/연자성체 복합체 필름)

  • Han, Ji-Eun;Jeon, Byung-Kuk;Goo, Bon-Jae;Cho, Seung-Hyun;Kim, Sung-Hoon;Lee, Kyung-Sub;Park, Yun-Heum;Lee, Jun-Young
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • We fabricated the electromagnetic (EM) noise absorber films for high temperature use by blending a soft magnetic powder with poly(amide imide) (PAI). The EM noise absorber films of PAI/soft magnet composite were prepared by casting the solution of poly(amide amic acid)/soft magnet powder into glass substrate with casting applicator device and then thermal imidization. The obtained films were fully characterized and their physical properties including thermal behavior, thermal stability and mechanical properties were studied. The EM noise absorption ability was also investigated using micro-strip line method. At 1 GHz, the power loss of composite film with 150 ${\mu}m$ thickness was about 25%.

High Power W-band Power Amplifier using GaN/Si-based 60nm process (GaN/Si 기반 60nm 공정을 이용한 고출력 W대역 전력증폭기)

  • Hwang, Ji-Hye;Kim, Ki-Jin;Kim, Wan-Sik;Han, Jae-Sub;Kim, Min-Gi;Kang, Bong-Mo;Kim, Ki-chul;Choi, Jeung-Won;Park, Ju-man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.67-72
    • /
    • 2022
  • This study presents the design of power amplifier (PA) in 60 nm GaN/Si HEMT technology. A customized transistor model enables the designing circuits operating at W-band. The all matching network of the PA was composed of equivalent transformer circuit to reduce matching loss. And then, equivalent transformer is several advantages without any additional inductive devices so that a wideband power characteristic can be achieved. The designed die area is 3900 ㎛ × 2300 ㎛. The designed results at center frequency achieved the small signal gain of 15.9 dB, the saturated output power (Psat) of 29.9 dBm, and the power added efficiency (PAE) of 24.2% at the supply voltage of 12 V.

The Design and Fabrication of the Triple-Band Planar Monopole Antenna for Coupled U Patch Line and Rectangular Patch (U자형 패치 라인과 사각 패치를 결합한 삼중 대역 평면형 모노폴 안테나 설계 및 제작)

  • Lee, Sung-Hun;Lee, Seung-Woo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.745-753
    • /
    • 2011
  • In this paper, the planar monopole antenna for multi-band service is proposed. The proposed antenna, which is a rectangular patch antenna with a U-shaped slit based on a monopole antenna for wide bandwidth characteristic, is designed and analyzed. The antenna size has been miniaturized by using the U-shaped slit. The frequency characteristics are modified and optimized by varying specific parameters. To obtain desired frequency bands, the U-shaped slit and patch lines have been applied. Whole antenna dimensions including the ground plane are $35{\times}50{\times}1\;mm^3$, and the antenna part size is $35{\times}27\;mm^2$. It is fabricated on the FR-4 substrate(${\epsilon}_r=4.4$) using a microstrip line of $50{\Omega}$ for impedance matching. For the measured results, the impedance bandwidth below a VSWR of 2 is 790~916 MHz, 1.74~2.14 GHz, and 2.36~3.13 GHz. The fabricated antenna is satisfied with the aimed impedance bandwidth in GSM/DCS/US-PCS/UMTS/Bluetooth/S-DMB applications.

Cavity-Backed Slot Array Antenna for a Repeater System of a Satellite Digital Multimedia Broadcasting (위성 DMB 중계기용 Cavity-Backed슬롯 배열 안테나)

  • Jung Hee-Chul;Lee Hak-Yong;Jung Byungwoon;Kang Gi-Cho;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.366-372
    • /
    • 2005
  • This paper presents analysis of a slot array antenna having a low side lobe level and high front-to-back ratio for a repeater system of a satellite DMB(Digital Multimedia Broadcasting) service. Antennas for this repeater system require a high gain and enough isolation to reduce interferences between signals in system. Therefore, it is necessary to suppress a side lobe level and to increase front-to-back ratio. Unlike a structure 134 by lossy microstrip lines, in this work a single cavity-backed slot antenna array using a single waveguide feed is proposed to obtain the reliability for high power handling and high radiation efficiency. The side lobe level and front-to-back ratio are enhanced with tapered array technique and an optimized vertical reflector. The measured side lobe levels in H- and E-plane are under $-33.24\;\cal{dB}$ and $-35.78\;\cal{dB}$, respectively. The front-to-back ratio over $37.84\;\cal{dB}$, and the peak gain of over $17\;\cal{dBi}$ are measured.

Design of the 60 GHz Single Balanced Mixer Integrated with 180° Hybrid Coupler Using MEMS Technology (HEMS 기술을 이용한 180° 하이브리드 결합기가 집적된 단일 평형 혼합기의 설계 및 제작에 관한 연구)

  • Kim Sung-Chan;Lim Byeong-Ok;Baek Tae-Jong;Ko Baek-Seok;An Dan;Kim Soon-Koo;Shin Dong-Hoon;Rhee Jin-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.753-759
    • /
    • 2005
  • In this paper, we have developed a new type of single balanced mixer with the RF MEMS $180^{\circ}$ hybrid coupler using surface micromachining technology. The $180^{\circ}$ hybrid coupler in this mixer is composed of the dielectric-supported air gapped microstriplines(DAMLs) which have signal line with $10{\mu}m$ height to reduce substrate dielectric loss and dielectric posts with size of $20{\mu}m{\times}20{\mu}m$ to elevate the signal line on air with stability At LO power of 7.2 dBm, the conversion loss was 15.5 dB f3r RF frequency or 57 GHz and RF power of -15 dBm. Also, we obtained the good RF to LO isolation of -40 dB at LO frequency of 58 GHz and LO power of 7.2 dBm. The main advantage of this type of mixer is that we are able to reduce the size of the chips due to integrating the MEMS passive components.

Design of 4-Bit TDL(True-Time Delay Line) for Elimination of Beam-Squint in Wide Band Phased-Array Antenna (광대역 위상 배열 안테나의 빔 편이(Beam-Squint) 현상 제거를 위한 4-Bit 시간 지연기 설계)

  • Kim, Sang-Keun;Chong, Min-Kil;Kim, Su-Bum;Na, Hyung-Gi;Kim, Se-Young;Sung, Jin-Bong;Baik, Seung-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1061-1070
    • /
    • 2009
  • In this paper, we have designed TDL(True-time Delay Line) for eliminating beam-squint occurring in active phased array antenna with large electrical size operated in wide bandwidth, and have tested its electrical performance. The proposed TDL device is composed of 4-bit microstrip delay line structure and MMIC amplifier for compensation of the delay-line loss. The measured results of gain and phase versus delay state satisfy the electrical requirements, also P1dB output power and noise figure meet the requirement. To verify the performance of fabricated TDL, we have simulated the beam patterns of wide-band active phased array antenna using the measured results and have certified the beam pattern compensation performance. As a result of simulated beam pattern compensation with respect to the 675.8 mm size antenna which is operated in X-band, 800 MHz bandwidth, we have reduced the beam squint error of ${\pm}1^{\circ}$ with ${\pm}0.1^{\circ}$. So this TDL module is able to be applied to active phase array antenna system.

Design and Implementation of Linear Gain Equalizer for Microwave band (초고주파용 선형 이득 등화기 설계 및 제작)

  • Kim, Kyoo-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.635-639
    • /
    • 2016
  • In the devices used in the microwave frequency band, the gain decreases as the frequency increases due to the parasitic component. To compensate for these characteristics, a linear gain equalizer with an opposite slope is needed in wideband systems, such as those used for electronic warfare. In this study, a linear gain equalizer that can be used in the 18 ~ 40GHz band is designed and fabricated. Circuit design and momentum design (optimizations) were carried out to reduce the errors between design and manufacturing. A thin film process is used to minimize the parasitic components within the implementation frequency band. A sheet resistance of 100 ohm/square was employed to minimize the wavelength variation due to the length of the thin film resistor. This linear gain equalizer is a structure that combines a quarter wavelength-resonator on a series microstrip line with a resistor. All three 1/4 wavelength short resonators were used. The fabricated linear gain equalizer has a loss of more than -5dB at 40GHz and a 6dB slope in the 18 ~ 40GHz band. By using the manufactured gain equalizer in a multi-stage connected device such as an electronic warfare receiver, the gain flatness degradation with increasing frequency can be reduced.