• Title/Summary/Keyword: 마샬배합설계

Search Result 25, Processing Time 0.024 seconds

Evaluation of Rutting Performance of Hot Mix Asphalt with Compaction Curve of Gyratory Compactor (선회다짐기 다짐곡선을 이용한 아스팔트 혼합물의 소성변형 특성 평가)

  • Park, Tae-Seong;Lee, Byung-Sik;Hyun, Seong-Cheol;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.59-67
    • /
    • 2007
  • For the time being, HMA test specimen were prepared by Marshall Compaction Method for hot mix asphalt design and evaluated the mechanical properties of HMA at the specified air voids. Gyratory Compaction can simulate the field compaction process and measure the degree of compaction just after field compaction in laboratory. Superpave mix design with Gyratory compactor has been used for characterization of performance. The curve of gyratory compaction can be used to evaluate the permanent deformation potential of hot mix asphalt. In this paper, couple of indices for hot mix asphalt have been showed for hot mix asphalt in Korea. The major properties from gyratory compaction curve are compaction energy index and traffic compaction index. The specific guide line for the potential of hot mix asphalt has been proposed.

Fundamental Properties of Asphalt Concrete Mixture as Using TDF Fly Ash as Mineral Filler (아스팔트 콘크리트 채움재로 TDF Fly Ash 적용에 따른 아스팔트 혼합물 기초 물성 평가)

  • Choi, Min-Ju;Kim, Hyeokjung;Kim, Yongjoo;Lee, Jaejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • TDF (Tire derived fuel) Fly ash is an industrial by-product when scraped tire was used a fuel source at the power plant. TDF Fly ash has been classified as domestic waste at the workplace so far and has not been appropriately utilized. We conducted a fundamental physical property test of asphalt mixture to investigate the possibility of using TDF Fly ash as a mineral filler of asphalt mixture for exploring new usage strategies. TDF Fly ash meets KS F 3501 asphalt mixture mineral filler criteria. And the optimal asphalt binder amount was determined to be 4.5% by Marshall design. Mineral filler content was determined at 3% and analyzed by comparing using mineral filler as stone powder. The basic physical property test of the asphalt mixture was evaluated to the provision indicated in "Production and Construction Guidelines for Asphalt Mixture" published by the Ministry of Land, Infrastructure and Transport. In the test, Marshall stability test, dynamic immersion test, tensile strength ratio test, wheel tracking test were carried out. As a result of the experiment, Marshall stability and dynamic stability satisfied the standards, and confirmed the stability and Dynamic immersion and tensile strength ratio test that TDF Fly ash is more effective for scaling and moisture resistance than stone dust. Therefore, in this research, it is expected that multilateral utilization of TDF Fly ash, and a positive effect can be also expected.

Specimen Size Effect in Estimation of Rut Resistance based on Deformation Strength (공시체 크기가 변형강도를 이용한 소성변형 추정에 미치는 영향)

  • Lee, Moon-Sup;Choi, Sun-Ju;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.1-13
    • /
    • 2004
  • This study dealt with size effect of specimen in measuring deformation strength and estimating rut resistance of asphalt concretes under static loading using Kim test. Two aggregates, a normal asphalt (pen 60-80) and 6 polymer-modified asphalt (PMA) binders were used for preparation of 14 dense-graded mixtures. Mixtures were prepared based on optimum asphalt content by Marshall compactor (S= 10cm) and gyratory compactor (S= 15cm) for Kim test and for wheel tracking test. In statistical analysis by general linear model (GLM) procedure of SAS, the diameter of specimen was found not to be a significant factor that affect the Kim test result. Therefore, it was found that either loom-diameter or 15cm-diameter of specimen gave no significant difference in deformation strength ($K_D$) values in Kim test for any aggregate mixture. However, the thickness of specimen was found to be a significant factor in determining $K_D$. It is estimated that $K_D$ is a function of y, vertical deformation, and y has something to do with thickness of specimen. Therefore, it is suggested that the thickness of specimen should not be higher than 6.6cm, and the correction factor depending on the thickness value should be developed in the future study.

  • PDF

Correlation Analysis between Rut Resistance and Deformation Strength for Superpave Mixtures (수퍼페이브 혼합물의 소신변형저항성과 변형강도와의 상관성분석)

  • Kim, K.W.;Kim, S.T.;Kwon, O.S.;Doh, Y.S.
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.45-53
    • /
    • 2004
  • This study dealt with correlation analysis between deformation strength and rut resistance of asphalt concretes based on binder grade in Superpave specification with changing submerging time. Currently, Mashall mix design is known to have little correlation with rutting related performance. Therefore, some agencies started to use the Superpave method for asphalt mix design. But this method has a weak point in that it can not distinct mechanical property of the asphalt mixtures designed. For solution of these problem, this study used deformation strength, $S_D$, of Kim test which is a new approach under development for finding property which represents rut resistance characteristics of asphalt mixtures under static loading. This study used two aggregates from two regions and five PG asphalt binders. Final rut depth (DR) and dynamic stability (DS) from wheel tracking (WT) test were obtained. and $S_D$ value of the same mixture specimen which was made by gyratory compactor was obtained using loading head [4(1.0)]. Three submerging times 30min, 40min, 50min were used as a test variable at $60^{\circ}C$. Correlation analysis of DR and DS with $S_D$ were performed based on PG grade. It was found out that the $S_D$ has a high correlation with DR and DS of superpave mixtures. The highest $R^2$ was found from the $S_D$ values of 30min. submerged specimen.

  • PDF

Evaluation of Rutting Behavior of Hot Mix Asphalt using Slag and Waste Foundry Sand as Asphalt Paving Materials (슬래그와 폐주물사를 이용한 아스팔트 혼합물의 소성변형특성에 관한 연구)

  • Lee, Kwan-Ho;Cho, Jae-Yoon;Jeon, Joo-Yong
    • 한국도로학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.89-92
    • /
    • 2002
  • The objective of this research is to evaluate engineering properties of recycled aggregates, slag as coarse & fine aggregate and waste foundry sand(WFS) as fine aggregate, in hot mix asphalt(HMA). In this research, soundness, gradation and particle analysis, abrasion, specific gravity and absorption test were carried out. The optimum asphalt binder content(OAC) for various HMA combinations of recycled aggregate was determined by Marshall Mix Design. The ranges determined is between 7.2% and 7.5%. Indirect tensile test, resilient modulus test, creep test were carried out for characterization of rutting behavior of various combination of HMA. Judging from the limited tests, the HMA with recycled aggregates is not as good rutting resistance as the HMA with common aggregates. After finishing the Wheel tracking test, the application or feasibility for the use of recycled aggregate as asphalt paving material will be determined.

  • PDF

Evaluation of Laboratory Performance Characteristics of Fiber-Reinforced Asphalt Concrete (섬유활용 아스팔트 콘크리트의 실험적 공용특성평가)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.61-72
    • /
    • 2002
  • The optimum fiber and asphalt binder contents were decided on the base of the Mashall mix design method. To compare the mechanical characteristics between the conventional(dense-graded 20) and the fiber-reinforced mixtures, indirect tension tests were conducted under three temperatures(5, 20, 60$^{\circ}C$). In particular, the wheel tracking tests were performed to evaluate the rutting resistances of the mixtures. Test results showed that the indirect tensile strength of fiber-reinforced asphalt concrete was higher than that of conventional one. The toughness of fiber-reinforced mixture was 1.27 to 1.97 times higher than that of conventional one, depending upon the temperature. In addition, the results of wheel tracking tests and the retained indirect splitting tension tests conducted at $60^{\circ}C$ revealed that the resistance to permanent deformation of fiber-reinforced mixture was stronger than that of the conventional one.

Predictive Equation of Dynamic Modulus for Hot Mix Asphalt with Granite Aggregates (화강암 골재를 이용한 아스팔트 혼합물의 동탄성 계수 예측방정식)

  • Lee, Kwan-Ho;Kim, Hyun-O;Jang, Min-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.425-433
    • /
    • 2006
  • The presented work provided a predictive equation for dynamic modulus of hot mix asphalt, which showed higher reliability and more simplicity. Lots of test result by UTM at laboratory has been used to develop the precise predictive equation. Evaluation of dynamic modulus for 13mm and 19mm surface course and 25mm of base course of hot mix asphalt with granite aggregate and two asphalt binders (AP-3 and AP-5) were carried out. Superpave Level 1 Mix Design with gyrator compactor was adopted to determine the optimum asphalt binder content (OAC) and the measured ranges of OAC were between 5.1% and 5.4% for surface HMA, and around 4.2% for base HMA. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature (-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies (0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The effect of each parameter for equation has been compared. Due to the limitation of laboratory tests, the reliability of predictive equation for dynamic modulus is around 80%.

Evaluation on the Mechanical Properties of Multi-Functional Asphalt Pavements for Surface Course (다기능 표층용 아스팔트 혼합물의 역학적 특성 평가)

  • Lee, Kwan-Ho;Ham, Sang-Min;Kim, Seong-Kyum;Lee, Byung-Sik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.292-295
    • /
    • 2011
  • 본 논문에서는 배수성(저소음)포장을 포함하는 2-Layer 아스팔트 포장의 상부층과 하부층의 역학적인 특성을 평가하는데 목적이 있다. 연구 방법으로는 슈퍼페이브 배합설계로 2-Layer 아스팔트 포장의 상 하부층 시편을 제작하였으며, 시편 상부층의 최대공칭치수는 4.75mm이고 하부층의 최대공칭치수는 13mm이다. 이 시편에 대한 기본 물성 시험 실시 후 마샬 안정도 시험에 대한 안정도와 흐름값을 평가하였다. 그리고 상부층과 하부층의 자유단 공진주 시험을 통해 탄성계수(E)를 측정하였고, 비파괴 시험법인 슈미트해머(Schmidt hammer)를 이용해 반발경도를 측정한 후 강도를 추정하였다. 또한 일축압축시험으로 측정된 압축강도로 탄성계수($E_{50}$)를 계산하였다. 마지막으로 각각의 역학적 시험을 통해 얻어진 결과값으로 강도(qu)와 탄성계수 ($E_{50}$)의 상관관계와 추정식으로 구한 강도와 일축압축강도 시험으로 얻어진 강도와의 상관관계를 분석하였고, 자유단 공진주 시험의 탄성계수(E)값과 일축압축시험의 결과로 얻어진 탄성계수($E_{50}$)의 상관관계를 분석하였다.

  • PDF

Evaluation of Performance of Modified Recycling Asphalt Mixture and Normal Asphalt Mixture Using Basalt Powder Sludge as Filler (현무암 석분슬러지를 채움재로 활용한 개질재생아스팔트혼합물과 일반아스팔트혼합물의 공용성 평가)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.611-619
    • /
    • 2018
  • Basalt powder sludge (abbreviated BPS) is an inevitable industry by product resulted from the stone processing. Recently, demands for natural materials have been increasing in the construction and landscaping fields, therefore, amounts of BPS have been also increasing. Since most of BPS are used as landfill and earth soil, it is necessary to figure out to expedite their utilization. In this study, by considering the characteristics of precipitation of Jeju, effectiveness of BPS as a filler for asphalt compounds mixed with cement were analyzed. As a result, BPS satisfies quality criterion required in KS F 3501. Marshall mixing designs were performed to determine the optimal asphalt content for the Modified recycling asphalt mixture (27% recycling aggregate) and the Normal asphalt mixture. Effectiveness of BPS were identified by the Marshall Stability Test with the mixing ratio (level 3) of two asphalt compounds and composition ration (level 3) of BPS and cement. Performance of asphalt compounds shown appropriate effect of mixing and composition ratios of the filler were assessed. Test results show that two types of asphalt compounds satisfy the quality standards of the MLIT (2015). Therefore, BPS could be used as filler for asphalt compounds.

A Study on Asphalt Paving Filler Development from Industrial By-products and its Characteristics in Construction Site (산업부산물을 활용한 아스팔트 포장용 채움재 개발 및 현장시공 성능평가 연구)

  • Cho, Do-Young;Park, Keun-Bae;Woo, Yang-Yi;Moon, Bo-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.227-234
    • /
    • 2016
  • In this study, asphalt paving filler, which satisfies the KS standards, were prepared from industrial by-products, such as fly ash generated from thermal power plants, cogeneration ash generated from cogeneration plants, and desulfurized gypsum generated from the flue-gas desulfurization process. The properties of the prepared mixed filler and the existing limestone filler were compared through laboratory tests for preparing asphalt mixture using each filler. In addition, asphalt pavement field tests were conducted using the limestone filler and mixed filler. The dynamic stability, Marshall stability, tensile strength ratio, saturation, porosity, and flow value of the asphalt mixtures used in the field test were evaluated, as was done in the laboratory test. The laboratory and field construction test results revealed outstanding tensile strength ratio, Marshall stability and dynamic stability when using the prepared filler than for the existing limestone filler. Through optimization of the mixing design, the possibility of developing fillers, which the characteristics of the existing limestone filler, was confirmed.