• Title/Summary/Keyword: 마모저항성

Search Result 126, Processing Time 0.025 seconds

Effect of Conditioning Methods on the Shear Bond Strength of Veneering composite on Zirconia Ceramic (Y-TZP ceramic의 표면처리에 따른 전장용 레진의 전단결합강도)

  • Nam, Hyun-Seok;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.253-264
    • /
    • 2010
  • The purpose of this study is to know whether Yttrium-stabilized-tetragonal -zirconia-polycrystal(Y-TZP ceramic) gets enough shear bond strength for clinical uses by applying veneering composite resin through surface treatment on it and finally to compare it with the case of applying veneering porcelain. LavaTM zirconia frameworks(3M ESPE, Seefeld, Germany) were prepared. Group P was manufactured with LavaTM Ceram(3M ESPE, Seefeld, Germany) in cylindrical shape which has 4mm diameter, 5mm height. Group ZSR disposed sandblasting and applied silane, bonding agent and after that indirect composite resin was applied. Group ZRR got tribochemical coating by RocatecTM system(3M ESPE. Seefeld, Germany) and treated silane. Finally Group ZPR took the same treatment and applied LavaTM Ceram in the size of 0.3-0.5mm height. After burning out, sandblasting, HF and silane was applied. And then, indirect composite resin was applied. 1000 cycle thermocycling was performed in $5-55^{\circ}C$ and shear bond strength was measured. There were no significant differences between combining veneering porcelain to Y-TZP ceramic group and combining veneering resin to Y-TZP ceramic group in the aspect of shear bond strength (p>.05).

FEA estimates of margin design in all ceramic crowns (완전 도재관을 위한 지대치 형성시 변연 형태에 따른 응력 분포의 유한요소법적 비교)

  • Han, Sang-Hyun;Cho, Jung-Hyeon;Lee, En-Jung;Jeong, Suk-In;Oh, Nam-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Statement of problem: Over the past decade, increased demand for esthetically pleasing restorations has led to the development of all-ceramic systems. Recent reports suggest that the all-ceramic crowns have excellent physical properties, wear resistance, and color stability. In addition, numerous ceramics have excellent biocompatibility, a natural appearance, and improved physical bonding with resin composite luting agents. However, the brittle nature of ceramics has been a major factor in their restriction for universal usage. Functional occlusal loading can generate stress in the luting agent, and the stress distribution may be affected by the marginal geometry at the finish line. Tooth preparation for fixed prosthodontics requires a decision regarding the marginal configuration. The design dictates the shape and bulk of the all ceramic crowns and influences the fit at the margin. Purpose: The purpose of this study was to evaluate the stress distribution within marginal configurations of all- ceramic crowns (90-degree shoulder, 110-degree shoulder, 135-degree shoulder). Material and methods: The force is applied from a direction of 45 degrees to the vertical tooth axis. Three-dimensional finite element analysis was selected to determine stress levels and distributions. Results and conclusion: The result of stress level for the shoulder marginal configuration was more effective on stress distribution at 135-degree shoulder margin. But the stresses concentrated around at 135-degree shoulder margin. The stress decreased apically at the surface between cements and alumina core, and increased apically at the surface between alumina core and veneering porcelain.

CHEMICAL DEGRADATION OF LIGHT-CURED DENTAL COMPOSITE RESINS (수종 치과용 광중합형 복합레진의 화학적 분해)

  • Yang, Kuy-Ho;Choi, Nam-Ki;Park, Mi-Ran;Park, Eun-Hae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.403-411
    • /
    • 2001
  • The aim of this study was to evaluate the resistance to degradation of four commercial composite resins in an alkaline solution. The brands studied were Unifil(GC, Japan), Palfique(Tokuyama Japan). Definite$Degussa-H\ddot{u}ls$ AG, Germany). Revolution(Kerr, U.S.A.). Preweighed discs of each brand were exposed 0.1N NaOH solution at $60^{\circ}C$. After 14 days they were removed, neutralized with HCl, washed with water and dried. Resistance to degradation was evaluated on the basis of following parameters: (a) mass loss(%) - determined from pre-and post-exposed specimen weights; (b) Si loss(ppm) - obtained from ICP-AE analysis of solution exposed to specimens; and (c) degradation depth$({\mu}m)$ - measured microscopically (SEM) from polished circular sections of exposed specimens. The results were follows: 1. The mass loss of Unifil was 3.21%, it was the highest of materials. But, there was no significant difference among the materials. 2. The degree of degradation layer depth was $107.69\sim47.40{\mu}m$, the sequence of the degree pf degradation layer depth was in descending order by Unifil, Palfique, Revolution, Definite. There was significant difference among the materials except Palfique and Definite. 3. The Si loss of Paltique was 8940.0ppm, it was the highest. There was significant difference among the materials, except Revolution and Definite(p<0.05). 4. The correlation coefficient between mass loss and degradation depth was relatively high(r = 0.06, p<0.05). 5. There was no significant coefficient correlation between Si loss and mass loss, and/or the degree of degradation layer depth and Si loss. 6. When observed with SEM, destruction of bonding is observed between resin matrix and filler. Above results suggested that the hydrolytic degradation is considered as evaluation factor of composite resins.

  • PDF

A Process Optimization of HVOF on ALBC3 by Experiments Design (실험계획법을 이용한 ALBC3에 대한 고속화염용사의 최적 공정 설계)

  • Kim, Young-Moon;Lim, Byung-Chul;Kim, Min-Tae;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.448-453
    • /
    • 2016
  • Erosion and abrasion caused by cavitation damage occur in fluid equipment, such as ships or impellers. Similarly, the equipment damage from noise and vibration can shorten its life. This study analyzed the importance of the parameter characteristics of the process optimization of HVOF (High Velocity Oxygen Fuel spraying), which is generally used in a variety of industries for enhancing the resistibility from the cavitation phenomenon. The surface of the ALBC3 substrate was coated with an amorphous powder as a filler metal according to the experimental design using the Taguchi method, and then the characteristics with each parameter were analyzed using a porosity measurement test. The optimal process conditions was a combustion pressure of 80psi, coating distance of 270mm, gun speed of 200mm/s, and powder feed rate of 25g/min as a result of the HVOF coating by applying the experimental design. The combustion pressure, coating distance and powder feed rate were more than 25% and indicated a similar contribution rate, but the contribution rate of the gun speed was 19%, which was slightly less than the others. The contribution rate with each parameter was only slightly significant. On the other hand, all four parameters were found to be important in the contribution rate aspects of the HVOF coating process.

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River (수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구)

  • Kim, So-Ra;Jeong, Sueng-Won;Lee, Gwang-Soo;Yoo, Dong-Geun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.

Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향)

  • Park, Jae-Kyoung;Jeong, Chang-Mo;Jeon, Young-Chan;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Statement of problem: Dental implant procedure has been recognized as a very effective treatment to rehabilitate fully or partially edentulous patients. However, mechanical failures such as screw loosening, screw fracture have been still reported frequently. Purpose: The purpose of this study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on implant-abutment screw loosening of three different joint connections after one million cyclic loading. Material and methods: The values of detorque before and after loading were measured in three different joint connections (Osstem Implant, Korea), one external butt joint, US II implant system and two internal cones, SS II and GS II system. The values of detorque before loading was analyzed by one-way ANOVA, and two-way ANOVA and Scheffe' test were performed for the value of detorque after loading. Results: 1. The values of initial detorque of tungsten carbide/carbon coated Ti alloy screw were smaller those of Ti alloy screw (P<.01), and there were no differences among implant systems in each screw (P>.05). 2. In comparison of loss rate of detorque value after cyclic loading, US II system was greater than SS II and GS II system but there was no difference between SS II and GS II system (P<.01). 3. Loss rates of detorque value after cyclic loading decreased consistently at tungsten carbide/carbon coated Ti alloy screw comparing with Ti alloy screw in all implant systems (P<.01), and there were no differences among three systems in reduction of loss rates by using tungsten carbide/carbon coated Ti alloy screw (P>.05). Conclusion: Tungsten carbide/carbon coating to increase preload with reduction of friction resistance was a effective way to decrease screw loosening by functional loading.