• Title/Summary/Keyword: 마멸입자

Search Result 56, Processing Time 0.026 seconds

Wear and Friction Characteristics of SiC Reinforced Aluminium 6061 Alloy Composites (SiC 보강 A16061 복합재료의 마멸 및 마찰특성에 관한 연구)

  • 권재도;안정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2122-2132
    • /
    • 1995
  • There are some cases which require to grasp the abrasion resistance property in the fields of the high-technology to be required the high specific strength and modulus. In this study, wear test with the various test temperature and velocity were performed in the SiCw/A16061 composite and A16061 matrix using the wear test machine of the ring-on-disc type. As the results, the friction and wear properties by various test temperature and velocity were examined. The worn surface has observed by scanning electron microscope in order to examine the wear mechanism.

Material Transfer of MoS2 Wear Debris to Diamond Probe Tip in Nanoscale Wear test using Friction Force Microscopy (마찰력현미경을 이용한 나노스케일 마멸시험 시 다이아몬드 탐침으로의 MoS2 마멸입자 전이현상)

  • Song, Hyunjun;Lim, Hyeongwoo;Seong, Kwon Il;Ahn, Hyo Sok
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.286-293
    • /
    • 2019
  • In friction and wear tests that use friction force microscopy (FFM), the wear debris transfer to the tip apex that changes tip radius is a crucial issue that influences the friction and wear performances of films and coatings with nanoscale thicknesses. In this study, FFM tests are performed for bilayer $MoS_2$ film to obtain a better understanding of how geometrical and chemical changes of tip apex influence the friction and wear properties of nanoscale molecular layers. The critical load can be estimated from the test results based on the clear distinction of the failure area. Scanning electron microscopy and energy-dispersive spectroscopy are employed to measure and observe the geometrical and chemical changes of the tip apex. Under normal loads lower than 1000 nN, the reuse of tips enhances the friction and wear performance at the tip-sample interface as the contact pair changes with the increase of tip radius. Therefore, the reduction of contact pressure due to the increase of tip radius by the transfer of $MoS_2$ or Mo-dominant wear debris and the change of contact pairs from diamond/$MoS_2$ to partial $MoS_2$ or Mo/$MoS_2$ can explain the critical load increase that results from tip reuse. We suggest that the wear debris transfer to the tip apex should be considered when used tips are repeatedly employed to identify the tribological properties of ultra-thin films using FFM.

An Experimental Investigation of Particle Impingement Erosion in Hydraulic System (유압시스템의 입자 침해 침식의 실험적 고찰)

  • 이재천
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.15-21
    • /
    • 2001
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop an analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.

  • PDF

초경합금재의 절삭에 관한 연구 -선반절삭에 있어서 공구의 마멸과 절삭저항-

  • 허성중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.248-248
    • /
    • 2004
  • 초경합금재 (cemented carbides)는 WC(텅스텐 카바이드, 탄화텅스텐)과 Co(코발트)를 주성분으로 한 복합재료로서 저온경도와 고온경도가 뛰어 나며, 압축강도와 강성이 높은 것 등, 제반 물리적 성질이 안정되어 있다 이와 같은 우수한 특징을 이용하여, 초경합금재는 다양한 분야에 이용되고 있는데, 크게 나누어 절삭 공구용으로 뿐만 아니라 IT 관련, 환경 관련 산업용, 광산용 공구, 건설 공구, 철강의 압연 롤러 등의 내마멸, 내충격용 재료에도 많이 사용된다. 이들 가운데, 내마멸, 내충격용으로 사용되는 것은 절삭 공구용 초경합금재에 비해 결합제인 코발트를 많이 함유하며 경질 성분의 텅스텐 카바이드의 입자 지름도 거칠고 크다.(중략)

  • PDF

Contact Analysis of a Spherical Particle Between Elastomeric Seal and Steel Surface (시일과 스틸면 사이에 구형입자가 있는 접촉문제의 해석)

  • Park, Tae-Jo;Jo, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.161-166
    • /
    • 2010
  • Elastomeric seals are widely used in dynamic seal applications, and it is well known that the sealing surfaces can be gradually worn out. Abrasive wear is known to be the most dominant factor; however, little research has been carried out on this problem until now. In this study, a new contact problem related to elastomeric seals-a small spherical particle and steel surface-was modeled and analyzed using MARC. Variations of von-Mises and residual stress distributions as well as deformed seal and steel surface shapes with seal materials and interferences are presented. The stress distribution and surface deformation are highly affected by the elastic properties of seal. For PTFE, the maximum von-Mises stress exceeds the yield strength, and plastic deformation occurs on the steel surface. Therefore, the sealing surface can also be worn down by sub-surface fatigue due to intervening hard particles in the sealing surfaces together with the well-known abrasion.

Sliding Contact Analysis between Rubber Seal, a Spherical Particle and Steel Surface (시일과 스틸면 사이에 구형 입자가 있는 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, a three elastic body sliding contact problem is modeled to investigate more precise wear mechanisms related with the sealing surface. A 3-D finite element contact model, a small spherical elastic particle, PTFE seal and steel surface, is solved using a nonlinear finite element code MARC. The deformed seal and steel surface shapes, von-Mises and principal stress distributions are obtained for different seal sliding distances. The entrapped small particle within PTFE seal results in very high stresses on the steel surface which exceeded its yield strength and produce plastic deformation such as groove and torus. The sealing surface could also be worn down by sub-surface fatigue due to intervening small particles together with the well-known abrasive wear. Therefore the proposed contact model adopted in this paper can be applied in design of various sealing systems, and further studies are required.

Forceseeability and Decision for Moving Condition of the Machine Driving System by Artificial Neural Network (인공신경망에 의한 기계구동계의 작동상태 예지 및 판정)

  • Park, H. S.;Seo, Y. B.;Lee, C. Y.;Cho, Y. S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.92-97
    • /
    • 1998
  • The morpholgies of the wear particles are directly indicative of wear processes occuring in machinery and their severity. The neural network was applied to identify wear debris generated from the machine driving system. The four parameters(50% volumetric diameter, aspect, roundness and reflectivity) of wear debris are used as inputs to the network and learned the friction condition of five values(material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameters learned. The three kinds of the wear debris had a different patter characteristic and recognized the friction condition and materials very well by artificial neural network. We discussed how the network determines differencee in wear debris feature, and this approach can be applied to foreseeability and decisio for moving condition of the Machine driving system.

  • PDF

Fretting Wear Test of Inconel 690 Tubes Employing Piezoelectric Actuator (압전 구동기를 이용한 인코넬 690 튜브의 프레팅 마멸시험)

  • Chung, Il-Sup;Lee, Myung-Ho;Park, Ki-Hong;Lee, Jung-Hoon;Kwon, Jae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.101-108
    • /
    • 2009
  • A fretting wear test rig for dry ambient condition, which employs a piezoelectric actuator, has been developed. It is driven and loaded in a very simple manner with acceptable experimental accuracy. By using the rig, Inconel 690 tube has been tested under the normal load of 10 and 15N with sliding amplitude of less than $100{\mu}m$ during $10^6$cycles. The wear resistance of the material has been characterized in terms of the wear coefficient based on the work rate model. SEM micrographs show the complex structures of the scars, which consist of risen peaks, plate-type thin layers and locally exposed bare surfaces. The cracks spread over the layers give clue to the fretting wear mechanism of the material.

Analysis of Wear Characteristics for Sliding Members of Hydraulic Rotary Actuator (유압피스톤 습동재료의 마멸특성 해석)

  • 김성희;김동호;이광영;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.101-108
    • /
    • 1999
  • This paper was undertaken to do morphological analysis of wear particles for sliding members hydrauric rotary acuator. The lubricating wear test was performed under different experimental conditions using the wear test device and wear specimens of the pin on disk type was rubbed in paraffinic base oil by three kinds of lubricating materials, varying applied load, sliding distance. The four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) are used for morphological analysis of wear particles. The results showed that the four shape parameters of wear particles depend on a kind of the lubricating materials. It was capable of presuming wear volume for three kinds of materials on driving time.

  • PDF

Damage Process Appraisal of Gears in Automobile Transmission (자동차 트랜스미션 기어의 손상과정 평가)

  • 배효준;조연상;이충엽;서영백;박흥식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.272-278
    • /
    • 1999
  • It is the effective method to diagnosis damage process of gear system such as automobile transmission to observe wear particle in gear oil. We tested with new transmission and took out gear oil according to drive distance. 4 shape parameters of wear particles in gear oil were calculated and wear volume were presumed with the image processing system. To be applied to damage diagnosis of gear system in transmission of automobile, we discuss number of wear particles, shape characteristics and total wear volume according to driving distance.

  • PDF