• Title/Summary/Keyword: 마란고니 대류

Search Result 11, Processing Time 0.028 seconds

A study of Heat Transfer Enhancement by Temperature Driven Marangoni Convection (온도차 마랑고니 대류에 의한 열전달 촉진에 관한 연구)

  • 김종윤;이동호;박종화;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.795-801
    • /
    • 2003
  • The primary object of this study is to obtain a basic knowledge of heat transfer enhancement mechanism as affected by temperature driven Marangoni convection. Experiments is achieved to visualize the enhanced heat transfer phenomena by the effect of Marangoni convection through the laser holographic interferometry. Also Nusselt Number is introduced for the relation of Marangoni Number.

Stability Analysis of Marangoni Convection for $NH_3\;-H_2O$ Absorption Process (전파이론을 통한 $NH_3\;-H_2O$ 흡수과정의 마란고니 대류 안정성 해석)

  • 최창균;김제익;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.450-455
    • /
    • 2002
  • Convective instability driven by surface tension is analyzed in an initially quiescent water absorbing ammonia gas using the linear stability theory. The propagation theory is adapated to find the critical conditions of the onset of solutal Maragoni convection. In this theory, the solutal penetration depth is chosen as the length scale factor. The results show that the liquid layer becomes more stable with decreasing the Schmidt number It is interesting that for a smaller Biot number than 100, the system becomes stable with decreasing Bi but for a larger Bi, it becomes unstable with decreasing Bi.

Onset of Marangoni Convection in a Ternary Mixture with Surfactant (계면활성제가 포함된 삼성분계 해석을 통한 마란고니 대류 발생 연구)

  • 김제익;강용태;최창균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.964-969
    • /
    • 2003
  • The objective of this study is to investigate the effect of surfactant on the onset of Marangoni convection adapting a non-linear surface equation of state. The surface tension gradient with respect to the absorbate concentration, ${\gamma}$, is linearly related to the surface concentration of a surfactant with a coeffcient $x_{A}$. The numerical results show that the role of the initial surfactant concentration to Marangoni instability changes from the stabilizer to the destabilizer depending on the change of the sign of $x_{A}$ from negative to positive. It is concluded that for $x_{A}$>0 there is a critical modified Marangoni number of surfactant $M_{Ac}$ $^{*}$ above which liquid layer is always unstable against long wave disturbances.rbances.

Noncondensable Gas Effects on the Marangoni Convection (마랑고니 대류에 미치는 불응축성가스의 영향)

  • Rie, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.510-518
    • /
    • 1996
  • The study presents experimental and theoretical analysis focusing on the infulence of a noncondensable gas upon the absorption enhancement that is obtained by Marangoni convection generated by the addition of the surfactant. The shadowgraph method is adopted in this visualization. As a result of absorption phenomena with shadowgraph photos, the different patterns of Marangoni convection cells are observed in accordance with the various amounts of noncondensable gas. Furthermore, non dimensional number K(Ma/Ra) is introduced to calculate the value of surface tension difference theoretically for the comparison with the various amount of non condensable gas in absorber.

  • PDF

Experimental Study on Rayleigh-Benard-Marangoni Natural Convection using IR Camera (열화상카메라를 이용한 Rayleigh-Benard-Marangoni 자연대류 실험 연구)

  • Kim, Jeongbae
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Rayleigh-Benard-Marangoni (RBM) convection have been artificially made for application of various engineering fields. For a relatively larger circular container, natural convection experiments were carried out to reveal and show the flow characteristics with engine oil (SAE30) using IR camera. IR camera has captured the temperature distribution on the free surface. From these experiments, it was confirmed that it was possible to quantitatively analyze the occurrence characteristics of RBM flow clearly from the thermal images taken with IR camera. As the aspect ratio increased, both the number of internal and external cavities increased. And found that the criteria of RBM flow generation proposed through previous experiments performed for small-sized containers are also very effective with the results on larger circular container.

NUMERICAL SIMULATION OF LASER WELD POOL GEOMETRY USING ENTHALPY METHOD (엔탈피 모델을 이용한 레이저 용융풀 형상에 대한 수치해석연구)

  • Lee, T.;Cheung, H.;Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.61-68
    • /
    • 2013
  • Laser welding is widely used in the industry for the advantage of small heat affected zone and short weld process time. Conduction limit welding can be used to modify the surface characteristic and it is important to identify the heat affecting area correctly for the improvement of manufacturing accuracy. Since time and length scale associated with laser welding process are extremely small, numerical study can be a useful tool. In this study, two-dimensional axi-symmetric version of energy equation with enthalpy method has been used to analyze the effect of laser input conditions on final shape by the laser welding process. The proposed numerical procedure has been benchmarked with several experimental results and compared well. The modified Marangoni and Peclet number have been introduced using controllable input variables. Simple parametric researches have been performed for high Pr number material. The results show that higher Marangoni number increase fluid mixing, thus generating convex type weld pool. On the other hand, the width of the weld pool is proportional to Peclet number.

A Study of tow-Power Density Laser Welding Process with Evolution of me Surface (자유표면변형을 고려한 저에너지밀도 레이저 용접공정 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1202-1209
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of weld pool geometry with moving free surface during low-energy density laser welding process. The free surface elevates near the weld pool edge and descends at the center of the weld pool if d$\sigma$/dT is dominantly negative. It is shown that the predicted weld pool width and depth with moving free surface are a little greater than those with flat weld pool surface. It is also believed that the weld pool surface oscillation during the melting process augments convective heat transfer rate in the weld pool. The present analysis with moving free surface should be considered when We number is very small compared to 1.0 since the deformation of the weld pool surface is noticeable as We number decreases.

A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface (자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.