• Title/Summary/Keyword: 마그마 거동

Search Result 15, Processing Time 0.023 seconds

Behavior of Pt, Sb, Te during Crystallization of Ore Magma (광화마그마에서의 백금, 안티모니, 테루리움 거동에 관한 연구 (II))

  • 김원사
    • Korean Journal of Crystallography
    • /
    • v.9 no.2
    • /
    • pp.153-158
    • /
    • 1998
  • 백금족 원소의 광화 마그마 내에서의 지화학적·결정학적 거동을 밝히기 위하여 백금, 안티모니, 테루리움계를 선택하여 800℃에서 안정한 광물 또는 화합물의 종류와 이들의 공생군, 원소간의 고용한계 등에 대해 실험적으로 연구하였다. 순도가 높은 각 원소를 초기 반응 물질로 하였으며, 고순도 석영관을 용기로 사용하였으며, 화학 반응 생성물은 반사현미경의, X선회절분석기, 전자현미분석기 등을 사용하여 분석하였다. 800℃에서 안정한 화합물로는, 백금(Pt), PtSb(stumpflite), PtSb2(geversite), PtTe, Pt3Te4, Pt2Te3, PtTe2(moncheite)이다. 이 연구 결과로부터 800℃에서의 상평형다이아그램을 정립하였다. 이 온도에서는 stumpflite와 geversite 및 moncheite가 현저히 치환고용체를 이루는데 그 한계는 각각 10 at.% Te, 28.5 at.% Te, 19.5 at.% Sb이다. 특히 원소광물인 백금과 stumpflite 및 moncheite는 화학성분은 이들 광물을 포함하고 있는 광상의 생성온도를 제시해 주는 지질온도계 역할을 할 수 있다.

  • PDF

Monitoring Techniques for Active Volcanoes (활화산의 감시 기법에 대한 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheol-Woo
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.119-138
    • /
    • 2014
  • There are various ways to monitor active volcanoes, such as the method of observing the activity of a volcano with the naked eye, the method of referring to the past eruptive history based on the historic records and the method of monitoring volcanoes by using observation equipment. The most basic method from the observation equipment-using methods to monitor volcanoes is seismic monitoring. In addition to this, the ways to monitor volcanoes are as follows: resonance observation which may be effective to remove artificial noises from the seismic activities that are recorded in the seismograph, ground deformation by using precision leveling, electronic distance measurement, tiltmeter, GPS, and InSAR observation method, volcanic gas monitoring, hydrologic and meteorological monitoring, and other geophysical monitoring methods. These monitoring methods can make volcanic activities effectively monitored, determine the behavior of magmas in magma chambers and help predict the future volcanic eruptions more accurately and early warning, thus, minimize and mitigate the damage of volcanic hazards.

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

DC Resistivity Survey Design for Deep Magma in Mt. Baekdu Using Distributed Acquisition System (백두산 심부 마그마 탐사를 위한 분산계측 시스템을 이용한 전기비저항탐사 설계)

  • Lee, Hyosun;Jung, Hyun-Key;Cho, Sung-Ho;Kim, Yesol;Lee, Youn Soo;Min, Dong-Joo
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.177-187
    • /
    • 2019
  • Several volcanic activities have continued in Mt. Baekdu since the Millennium eruption, and these phenomena have increased the need for volcanic activity surveillance. Various geophysical approaches are needed to obtain the depth and size of magma chamber that lie several kilometers below the surface. We examined the applicability of direct-current resistivity survey in this study. In order to explore the deep magma chamber of Mt. Baekdu, which has a spatial limitation due to the borderline, a large-scale survey with a length of tens of kilometers should be conducted. This type of survey requires a distributed measurement system and optimized exploration designs. Therefore, we propose survey designs taking advantage of our developed distributed acquisition system and analyze the applicability using numerical simulation. We confirmed that our designs that use single survey line with offline transmitting points show comparable results to the conventional 3D survey. It is expected that our research result can contribute to the deep geophysical exploration in Mt. Baekdu.

Interpretion of Transition between Explosive and Effusive Eruptions from Microlite Textural Analyses in the Albong Lava Dome, Ulleung Island, Korea (울릉도 알봉 용암돔의 미정 조직분석으로부터 폭발성 및 분류성 분출 간의 전환 해석)

  • Hwang, Sang Koo;Kim, Ki Beom;Son, Young Woo;Hyeon, Hye Weon
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.553-564
    • /
    • 2020
  • Transition between explosive and effusive eruption in Ulleung Island is observed in the Nari Scoria Deposits and Albong Trachyandesite (lava dome) origined by dome-building eruption and may be related to factors such as magma influx, ascent rate and degassing. However, the interpretation of them has not been resolved yet because the interaction between these factors is not complex but also the resulting behaviour during eruption is unpredictable. This paper focuses on the explosive and effusive activity perceived during building the Albong lava dome in Nari caldera. Samples were collected along with time from the scoria deposits and lava dome, linked to eruption stage and style of activity. Textures of groundmass feldspar microlites from these samples are quantitatively analyzed, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size. The microlite textures show that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. Transition between explosive and effusive eruption was driven by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in a cycle of effusive and explosive eruption.

Petrology of the Chaeyaksan basaltic rocks and application of hornblende geobarometer (채약산 현무암질암류의 암석학적인 특징 및 각섬석 지질압력계의 적용)

  • 김상욱;황상구;양판석;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.92-105
    • /
    • 1999
  • The Cretaceous Chaeyaksan basaltic rocks consist mainly of basaltic tuffs intercalating three layers of basalt. Stratigraphically, the rocks are located between the upper Songnaedong Formation and the lower Geoncheonri Formation and contain plagioclase, augite, hornblende, and a few olivine phenocrysts. Geochemically, they show calc-alkaline characteristics in some immobile element content, but show the alkaline suite feature in the mobile major element composition. The basalts are widely spilitized but some of them is altered to shoshonitic rocks with more calcic plagioclase, calcite, and chlorite, and adularia veinlets are common in the rocks. It is supposed that the post-eruption alteration of the rocks is done through alkali-replacement by hydrothermal solution or vapor rather than by low grade regional metamorphism. It is considered that A1 in hornblende will be available for estimating the pressure of the pre-eruption magma in the reservoir although the plagioclase of the rocks are highly albitized. The crystallization pressure was calculated as 5.7Kb by the equation of Johnson and Rutherford(l989) incorporating of the effect of overestimate of .41T in hornblende in the case of quartz-free rocks. Application of the estimated temperature, pressure and the constituent of phenocrysts of the rocks to the experimental P-T phase diagram for basalts established by Green(1982) indicates the crystallization course and succession of growth of the phenocrysts during of rising and cooling of the magma reservoir; augite + augite and olivine + augite, olivine, and hornblende -+ augite and hornblende+ augite, hornblende, and plagioclase. Such evolution course of the magma may include crystal fractionation by the phenocrysts crystallization and contamination by country rock in lower crust.

  • PDF

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Behavior of Pt, Sb, Te during Crystallizaion of Ore Magma (I) (광화마그마내에서의 백금, 안티모니, 테루리움 거동에 관한 연구(I))

  • 김원사
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.93-101
    • /
    • 1996
  • Behavior of platinum group elements during crystallization within ore magma is of interest. In this study platinum is selected and its mineralogical and geochemical behavior in the presence of antimony and tellurium is investigated at 600$^{\circ}C$. High purity Pt, Sb, and Te are used as starting material and silica quartz tubings are as container. Rection products have been examined by use of ore microscope, X-ray diffractometer, electron microprobe analyser and micro-indentation hardness tester. stable phases at 600$^{\circ}C$ are platinum (Pt), Pt5Sb, Pt3Sb, PtSb, stumpflite (PtSb), geversite (PtSb), PtTe, Pt3Te4, Pt2Te3, moncheite (PtTe2), tellurantimony (Sb2Te3), and antimony (Sb). Geversite is the mineral showing the most significant extent of solid solution by up to 27 at% between Sb and Te elements. Isothermal section of 600$^{\circ}C$ is established in this study. It is noted that platinum cannot coexists with stumpflite or geversite under equilibrium condition, and stumpflite composition in equilibrium with geversite may be used as geothermometer.

  • PDF

Geochemical Studies of the Trace Element of the Basalt in the Kilauea, Hawaii (킬라우에아 현무암의 미량원소에 대한 지구화학적 연구)

  • Park, Byeong-Jun;Jang, Yun-Deuk;Kwon, Suk-Bom;Kim, Jeong-Jin
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.675-689
    • /
    • 2007
  • Kilauea volcano's summit area was formed by continuous ind/or sporadic eruption activities for several hundreds years. In this study, we mainly focused on the trace elements characteristics through systematic sample rocks erupted from 1790 to September of 1982. Under the microscope it can be observed some main minerals such as olivine, clinopyroxene. and plagioclase with minor opaque minerals including Cr-spinel and ilmenite. Zr, V, Y, Ti elements show incompatible activities with MgO while Ni, Cr, Co elements show highly compatible properties. Elements like as Ba, Rb, Th, Sr, Nd are highly incompatible to show positive trends with $K_2O$. In the REE diagram LREE is more enriched than HREE suggesting typical Oceanic Island Basalt(OIB) type. It can be suggested that Sr have an effect on the fractionation of plagioclase from the kink in the $K_2O$ variation diagram. Y/Ho ratio diagram shows there was no fluids effect in the historical Kilauea volcano but Zr/Hf ratio diagram shows a significant difference between Kilauea lavas and PuuOo lavas. There are distinctive changes of trace element contents showing in particular abrupt changes of temporal variations between 1924 and 1954. Moreover, PuuOo lavas which had been erupted since 1983 follow these decreasing trends of trace element variation. Therefore, it is strongly suggested that these abrupt changes of trace elements trends result from the huge collapse geological event which formed Halemaumau crater in 1924 causing contamination effects of crustal contents into magma chamber and from the changes of parental magma composition injected into Kilauea volcano's summit magma reservoir.