• Title/Summary/Keyword: 마그네시아 시멘트

Search Result 18, Processing Time 0.025 seconds

A Study on the Solidification of Heavy Metal Ion by Phosphate Magnesia Cement (인산염 마그네시아 시멘트에 의한 중금속 이온 고정화에 관한 연구)

  • Choi, Hun;Choi, Jung-Ok;Kang, Hyun-Ju;Song, Myong-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.321-322
    • /
    • 2009
  • when the polluted soil with heavy metal ions was solidified using magnesia-phosphate cement, heavy metal ions were rarely eluted. Furthermore, the results cf SEM-EDS analysis showed that heavy metal ions in polluted soil turns into insoluble solid solution by magnesia-phosphate cement, it come to have the effect to stabilize heavy metals.

  • PDF

The application of Phosphate Magnesia Cement for Solidification of Soil (토양 고형화를 위한 인산염 마그네시아 시멘트 적용 연구)

  • Choi, Hun;Choi, Jun-Ok;Song, Myong-Shin;Moon, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.533-536
    • /
    • 2008
  • This study is the application of phosphate magnesia cement for solidification of soils. The object of the study is the application of the pavment of the farm roads. The new pavement method must be environmental, ecologic and durable. So, for solidification of farm road's soil, we use magnesia cement as quick setting, high strength materials. At magnesia phosphate cement, mixing ratio of mono ammonium phosphate and magnesia is 4:6 and w/b is 50 wt%, it show 14 MPa of compressive strength, and high hydration heat. Solidified soils that mixing ratios of magnesia cement and soil are 4:6 and 5:5 have very high durability for freezing and thawing.

  • PDF

Early-Age Compressive Strength of Magnesia-Phosphate Composite with Phosphate Type (인산염 종류에 따른 마그네시아-인산염 복합체의 초기 압축강도 특성)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.185-186
    • /
    • 2016
  • Four mortar mixes tested to evaluate the early-age compressive strength of magnesia-phosphate composite with phosphate type. Monopotassium phosphate, dipotassium phosphate, ammonium dihydrogen phosphate and diammonium phosphate used as phosphate. Test results show that the compressive strength of mortar used monopotassium phosphate as phosphate was highest, while compressive strength of mortars used dipotassium phosphate and diammonium phosphate as phosphate were not developed.

  • PDF

An Experimental Study on the Properties of Ultra Rapid Hardening Mortar Using Magnesia-Phosphate Cement (마그네시아 인산염 시멘트를 사용한 보수용 초속경 모르타르의 특성에 관한 실험적 연구)

  • Ahn, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.109-116
    • /
    • 2007
  • Building structures are generally large in size and have a long life, and the construction of such structures requires the investment of a huge amount of money and social infrastructure. Furthermore, building structures are closely related to people's life. Recently, however, the rapid development of society has been worsening air pollution, which is in turn accelerating the degradation of building structures. Thus, the safety of building structure is emerging as a critical issue. To cope with this problem, the government enacted "The Special Act on Safety Control for Infrastructure" but we need engineers' higher concern over the maintenance and reinforcement of existing structures. Recently researches are being made actively on repair mortar using ultra rapid hardening cement for recovering the performance of structures. The present study conducted an experiment on the basic physical properties of ultra rapid hardening mortar for repairing and reinforcing building structures using magnesia cement and mono-ammonium phosphate. In the experiment, we changed the water-cement ratio and carried out replacement at different ratio of MAP/MgO(%). We used retarder to have working life, and made comparative analysis through evaluating working life and fluidity and measuring strength by age.

Effect of Phosphate-to-binder and Water-to-binder Ratio on Magnesia-potassium Phosphate Cement (마그네시아-인산칼륨 시멘트에 대한 인산염 비 및 물-결합재비의 영향)

  • Lee, Kyung-Ho;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.275-281
    • /
    • 2017
  • This study examined the effect of water-to-binder ratio (W/B) and phosphate-to-binder ratio (P/B) on the flow, setting time, compressive strength development, and pH variation of magnesium-potassium phosphate composites, MKPC mortars. Ten mortars mixtures were prepared with the W/B varying from 20% to 40% at each P/B of 0.3 or 0.5. The hydration products and microstructural pore distribution of the MKPC pastes were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP). The initial flow and setting time of MKPC mortars tended to decrease with an increase of P/B, indicating that the final setting time was shortened by approximately 24% when P/B increased from 0.3 to 0.5. The slope of the early-strength development measured in the MKPC mortars was considerably higher than that of cement concrete specified in code provisions. For obtaining a relatively good 28-day strength (above 30 MPa) and a near neutral pH (below 9.0) in MKPC mortars, the P/B and W/B need to be selected as 0.5 and 30%, respectively. The strubite-K crystal increased with the increases of P/B and W/B, which leads to the decrease of the macro-capillary pores.

Fundamental Properties of Magnesia-Prosphate Composite Considering Mix Conditions and Curing Temperature (배합조건 및 양생온도에 따른 마그네시아 인산염 복합체의 기초물성 평가)

  • Cho, Hyun Woo;Kang, Su Tae;Shin, Hyun Seop;Lee, Jang Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.163-170
    • /
    • 2012
  • With the advantage of a rapid exothermic reaction property, jet set concrete may be used as a cold weather concrete because it can reach the required strength before being damaged by cold weathers. And it can be hardened more quickly if the field temperature is properly compensated by heating. Because ordinary concrete cannot be hardened well under sub-zero temperatures, anti-freeze agents are typically added to prevent the frost damage and to ensure the proper hardening of concrete. While the addition of a large amount of anti-freeze agent is effective to prevent concrete from freezing and accelerates cement hydration resulting in shortening the setting time and enhancing the initial strength, it induces problems in long-term strength growth. Also, it is not economically feasible because most anti-freeze agents are mainly composed of chlorides. Recent studies reported that magnesia-phosphate composites can be hardened very quickly and hydrated even in low temperatures, which can be used as an alternative of cold weather concrete for cold weathers and very cold places. As a preliminary study, to obtain the material properties, mortar specimens with different mixture proportions of magnesia-phosphate composites were manufactured and series of experiments were conducted varying the curing temperature. From the experimental results, an appropriate mixture design for cold weathers and very cold places is suggested.

The Bond Characteristics of Ultra Rapid Hardening Mortar for Repair using Magnesia-Phosphate Cement (마그네시아 인산염 시멘트를 이용한 초속경 보수 모르타르의 접착특성)

  • Lee, Sun-Ho;Kwon, Hee-Sung;Paik, Min-Su;Ahn, Moo-Young;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.609-612
    • /
    • 2008
  • Ultra Super Early Strength Cement is a material that satisfies these requirements. early hydration heat however, is significant over regular concrete, thus discretion is advised for thermal cracks in accordance with heat generation when constructing a large-scale structures. In addition, the negative point that it is difficult to achieve required strength in a short period of time following rubbing process while retaining workability, the cement is being used conditionally for engineering material and Ultra Super Early Strength Cement for maintenance material for construction doesn't exist. Magnesia Phosphate Cement, which is currently under studies in overseas uses no extra admixture and has strong points of Ultra Super Early Strength as well as favorable construction-ability and adhesive stability to the prototype concrete. These factors stem recognition that it could be used as maintenance material for construction of diverse applicability. In order to provide necessary data to increase practicality of the magnesia phosphate cement for Ultra Super Early Strength Mortar, the study carried out simulate experiment on member of framework to review field applicability.

  • PDF

An Experimental Study on Quality Properties of Living Concrete Using Loess-Magnesia Composites (황토-마그네시아 복합체 활용 Living Concrete의 품질특성에 관한 실험적 연구)

  • Yun-Wang, Choi;Young-Woo, Na;Yong-Woo, Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.498-505
    • /
    • 2022
  • In this study, as a result of eva lua ting the quality properties of Living Concrete, the flow of the table showed a tendency to decrease as the mixing ratio of ocher increased. Compressive strength was found to decrease with increasing loess mixing ratio. Density properties were evaluated for weight reduction, As a result of comparison with the panel using cement as a comparison group, the density was measured to be a bout 20 % lower than that of the cement panel, and it is judged that it is less affected by the load and can be installed in the structure. As a result of evaluating the panel temperature reduction, there was a difference in the temperature reduction with time. It is judged that the panel planted with moss has a lower temperature than the panel without moss, so it is judged that it can be used in a vertical greening system.