• Title/Summary/Keyword: 링레이저 자이로

Search Result 37, Processing Time 0.024 seconds

Error Analysis of the Multi-Frequency Coning Motion with Dithered Ring Laser Gyro INS (Dither를 가지는 링레이저 자이로 항법시스템의 복합 주파수 원추운동 오차 해석)

  • Kim, Gwang-Jin;Lee, Tae-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.697-702
    • /
    • 2001
  • The ring laser gyro(RLG) has been used extensively in strapdown inertial navigation system(SDINS) because of the apparent of having wide dynamic range, digital output and high accuracy. The dithered RLG system has dynamic motion at sensor level, caused by the dithering motion to overcome the lock-in threshold. In this case, an attitude error is produced by not only the true coning of the vehicle motion but also the pseudo coning of the sensor motion. This paper describes the definition of the multi-frequency coning motion and its noncommutativity error to reject the pseudo coning error produced by the sensor motion such as the dithered RLG. The simulation results are presented to minimize the multi-frequency coning error.

  • PDF

Flexure Error Analysis of RLG based INS (링레이저 자이로 관성항법시스템의 편향 오차 해석)

  • Kim Kwang-Jin;Yu Myeong-Jong;Park Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.608-613
    • /
    • 2006
  • Any input acceleration that bends RLG dithering axis causes flexure error, which is a source of the noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

ft Study on the Dither Random Noise for Improving the Bias Stability of Ring Laser Gyroscope (링레이저 자이로의 바이어스 안정도 개선을 위한 몸체진동 잡음 연구)

  • Shim, Kyu-Min;Kim, Cheon-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1065-1073
    • /
    • 2006
  • In this paper we confirm the relation between the phases and phase errors of the beat signal at the lock-in region of the amplitude modulation type ring laser gyroscope by numerical calculation. Based on this facts, we, numerically, study the envelopes and magnitudes of the dither noise for statistically summing out the beat signal phase error, and we, experimently, confirm these numerical results. As a result, we find that the dither noise requires the increase gradient and the decrease gradient of the dither amplitudes, and those gradients should be combined with white noise. The magnitude of the dither noise which is satisfied with these requirements should be more than 5 percents of the average dither amplitude.

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the space launch vehicle (우주발사체 자세제어용 링 레이저 자이로 피에조 구동기 설계)

  • Kim, Eui-Chan;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2010
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The space launch vehicle use require the high accuracy Gyro to control and determine the altitude to deliver the satellite in the space. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

A study on the Performance Improvement in Trapping Signal Processing Method of RLG (RLG Trapping 신호처리 기법의 성능개선에 관한 연구)

  • Yoo, Ki-Jeong;Kim, Cheon-Joong;Shim, Kyu-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.1003-1010
    • /
    • 2008
  • In this paper, we propose the new method to decrease the navigation error by measurement time synchronization error in RLG Trapping signal processing. There are two methods to eliminate the dither motion in RLG. One is the stripping signal processing method. Another is the trapping signal processing method. This two methods have various error sources in measurement output. We perform the error modelling and analysis for the measurement time synchronization error between angular rate from RLG and acceleration from accelerometer in the trapping signal processing method. And we verify the navigation performance through simulation and experiment. Results of simulation and experiment show that the proposed method is very effective in decreasing the navigation error.

The Design of Piezo-driven mirror for the Path Length Control in a Ring Resonator (링 공명기의 경로치 제어를 위한 피에조 구동 거울의 설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2551-2556
    • /
    • 2009
  • The principal operation of a ring laser gyroscope depends on the phase difference for the counter-propagating waves within a closed path. The reflection mirrors mounted on the resonator block form the traveling waves. Thus, the dimension accuracy of resonator block influences the traveling path of beam. In order to maintain the stable optical beam path in the ring resonator, the piezo-driven moveable mirror is adopted for the path length control under the thermal expansion or mechanical strain of resonator block. This paper presents the mathematical description of the elastic behavior of piezo-driven mirror. This description can be applied for the concept design of piezo-driven mirror.

Study of ARS using Ring Laser Gyro (Ring Laser Gyro를 이용한 ARS에 관한 연구)

  • Jeong, Sang-Ki;Choi, Hyeung-Sik;Ji, Dae-Hyeong;Jung, Dong-Wook;Kwon, O-Soon;Shin, Chang-Joo;Seo, Jung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.164-169
    • /
    • 2017
  • Studies were performed on an ARS using SDINS's RLG and the geomatic sensor. To develop the ARS, experiments were performed to determine the characteristics of the RLG and geomatic sensor. Based on the results, to reduce the angular position errors of the RLG, which accumulate from the angular velocity data, an algorithm was studied that uses the Extended Kalman filter (EKF) to compensate the RLG data and geomatic sensor data. To verify the performance of the developed algorithm for reducing the cumulative angular errors, experiments that included the developed EKF were performed. Through these, it was shown that a drastic reduction in the angular errors of the RLG were achieved.