• Title/Summary/Keyword: 링레이저 자이로

Search Result 37, Processing Time 0.026 seconds

Lock-in frequency improvement of ring laser gyro using a low - scattering mirror (저산란 반사경을 이용한 링레이저 자이로의 주파수 잠긴 개선)

  • Jo, Min-Sik;Shim, Kyu-Min;Kwon, Yong-Yool;Chung, Tae-Ho;Oh, Moon-Su;Lee, Soo-Sang;Cho, Hyun-Ju;Son, Seong-Hyun;Moon, Gun;Lee, Jae-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.336-339
    • /
    • 2002
  • For the improvement of the lock-in frequency of a ring laser gyro, a low-scattering mirror was employed in the laser resonator. A super-polishing technique produced fine mirror substrates of less than 1-A-rms-roughness. The mirror coating using an ionbeam sputtering technique reduced the scattering loss to less than 30 ppm. As a result of the mirror scattering enhancement of the ring laser, the lock-in frequency of the gyro was improved up to about 0.1 deg/sec.

Interferometric Measurement of Flexure Error in a Ring Laser Gyroscope (간섭계를 이용한 링레이저 자이로스코프의 플렉셔 오차 측정)

  • 김정주;이동찬;이재철;조민식;권용율
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.272-273
    • /
    • 2003
  • 링레이저 자이로스코프(Ring Laser Gyroscope-이하 RLG)는 비행기, 유도무기, 선박, 지상무기 등의 관성항법장치(Inertial Navigation System)에 사용되는 각속도 센서로서 항체의 위치와 자세 정보를 제공하는 핵심 구성품 중의 하나이다. 각속도 검출 원리는 삼각형 또는 사각형의 공진기에 He과 Ne을 혼합한 이득매질을 사용하여 서로 반대방향으로 회전하는 두 개의 레이저 빔을 발생시켜서 Sagnac 효과에 의해 외부의 회전 입력을 받을 때 서로 다른 광 경로의 차이로 인한 두 빔의 간섭으로 회전각을 검출한다. (중략)

  • PDF

Numerical Research on the Lock-in Compensation Method of a Ring Laser Gyroscope for Reducing INS Alignment Time (관성항법장치 초기정렬시간 단축을 위한 링레이저 자이로 lock-in오차 보상방법의 수치해석적인 분석)

  • Shim, Kyu-Min;Jang, Suk-Won;Paik, Bok-Soo;Chung, Tae-Ho;Moon, Hong-Key
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • Generally, the sinusoidal cavity dither is adopted to ring laser gyroscope for eliminating the lock-in which is non-linear effect at the small rotation input. Despite this method, there are some remained errors which are generated at the dither turnaround, and those errors produce random walk which is a general character of a ring laser gyroscope. As one of the numerous research results for compensating these errors, there is a special lock-in compensation method which is the method of error estimation and compensation by comparing the beat signal periods of before and after the dither turnarounds. In this paper, by ring laser gyroscope modeling and numerical analysis, we verified the theoretical validity and confirmed the effectiveness of this method in expectation of the possible beat signal measurement time resolution. As a result, we confirmed the random walk decreases from a-half to a-third by this lock-in compensation method. So, it is expected to be a remarkable method for reducing the INS alignment time.

The Implementation of Tightly coupled SDINS/GPS System based on the Ring Laser Gyro (링레이저 자이로 기반 관성항법장치와 위성항법장치의 강결합 방식 시스템 구현)

  • Yu, Haesung;Park, Sang Eun;Jeong, Jinseob;Park, Heung-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.134-141
    • /
    • 2013
  • This paper explores a real-time system implementation to couple tightly StrapDown Inertial Navigation System(SDINS) and Global Positioning System(GPS) mounted on the aircraft. When implementing the SDINS/GPS coupled system in real-time processor, we have to deliberate SDINS's unique characteristics based on the ring laser gyro, and besides, lever-arm, measurements, and error compensation method. The novel modeling method is applied to system the misalignment error term of gyro to estimate the cumulative heading attitude errors while the aircraft banking to turn repeatedly. Captive Flight Test results show that the proposed modeling strategy has good performance.

Scale Factor Error and Random Walk Characteristics of a Body Dither Type Ring Laser Gyro (몸체진동형 링레이저 자이로의 환산계수 오차 및 불규칙잡음 특성)

  • 심규민;정태호;이호연
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.139-149
    • /
    • 1999
  • In this paper, we estimate the scale factor error and random walk characteristics of the ring laser gyro which has the body dither for Lock-in compensation. And then, we compared those results with the static test results for 28cm square ring laser gyro which has about 0.5 deg/sec static Lock-in. In the case of sinusoidal body dither, dynamic Lock-in occurs periodically at the points where the gyro output pulse becomes the integer multiples of body dither frequency. The width of dynamic Lock-in is changed by variation of dither amplitude, and, between the width of dynamic Lock-in which occurs at the even multiple points of body dither frequency and that at the odd muliple points of body dither frequency, it has 180o phase difference. Generally random body dither is adopted to compensate for dynamic Lock-in. Then if the irregularity is not large enough, the scale factor error by dynamic Lock-in is not vanished. And if the irregularity is large enough, the scale factor error decreases, but random walk becomes larger relatively. And we confirmed that the larger body dither amplitude, the smaller random walk.

  • PDF

Noncommutativity Error Analysis with RLG-based INS (링레이저 자이로 관성항법시스템의 비교환 오차 해석)

  • Kim, Gwang-Jin;Park, Chan-Guk;Yu, Myeong-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • In this paper, we analyze a noncommutativity error that is not able to be compensated with integrating gyro outputs in RLG-based INS. The system can suffer from some motion known as RLG dithering motion, coning motion, ISA motion derived by an AV mount and vehicle real dynamic motion. So these motions are a cause of the noncommutativity error, the system error derived by each motion has to be analyzed. For the analysis, a relation between rotation vector and gyro outputs is introduced and applied to define the coordinate transformation matrix and the angular vector.

A Study on Error Analysis of Dual-Axis Rotational Inertial Navigation System Based on Ring Laser Gyroscope (링레이저 자이로 기반 2축 회전형 관성항법장치 오차해석에 대한 연구)

  • Kim, Cheon-Joong;Yu, Hae-Sung;Lee, In-Seop;Oh, Ju-Hyun;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.921-933
    • /
    • 2018
  • There is a method to enhance the pure navigation performance of INS(Inertial Navigation System) through the rotation of inertial measurement unit to compensate error sources of inertial sensors each other and that INS using this principle of operation is called rotational INS. In this paper, the exact error analysis of rotational INS based on ring laser gyro considering the coupling effect with gravity and earth rate is performed to evaluate the navigation performance by inertial sensor error sources. And error analysis and performance evaluation result confirmed by modelling and simulation is also proposed in this paper.

Principles and Prospects of Sagnac Interferometer Gyroscopes (사냑간섭계 원리를 이용한 자이로의 원리와 발전 전망)

  • Shim, Kyu-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.203-210
    • /
    • 2012
  • Sagnac interferometer gyroscopes can be divided into three large generations using starting points of time or highlights of their research. As the first generational Sagnac interferometer, the ring laser gyroscopes have been studied since the 1960s by laser invention, and as the second generational Sagnac interferometer, the fiber optic gyroscopes have been studied since the 1970s by invention of optical fiber for communication. In the latter half of the 1990s, after having confirmed the wave theory of the atom, studies of atomic interferometers were started for a next generation gyroscope application. This paper discusses the operation principles, application, and future prospects of these three generations of Sagnac gyroscopes.

Stripping Method of Ring Laser Gyroscope Based on Measurement Model of Dither Motion (디더 운동 측정치 모델 기반 링레이저 자이로 스트리핑 방법)

  • Kim, Cheon-Joong;Shim, Kyu-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.531-536
    • /
    • 2014
  • There are trapping and stripping methods as the technique to remove the dither motion from RLG(Ring Laser Gyro) output. V/F converter output of angular sensor to measure the dither motion is used in stripping method. But bias and scale factor error is always included in V/F converter output and is a critical limiting factor for the wide application of stripping method to RLG. Therefore there have been many researches to solve this problem. The method to accurately estimate the bias and scale factor error of V/F converter using measurements of the angular sensor acquired at data sampling rate of INS is presented in this paper. To this end, stripping technique based on model of dither motion is newly applied.

Self-Alignment/Navigation Performance Analysis in the Accelerometer Resonance State Generated by Dither Motion of Ring Laser Gyroscope in Laser Inertial Navigation System (레이저 관성항법장치에서 링레이저 자이로 디더 운동에 의한 가속도계 공진이 자체 정렬/항법 성능에 미치는 영향 분석)

  • Kim, Cheonjoong;Lim, Kyungah;Kim, Seonah
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.577-590
    • /
    • 2021
  • In this paper, we theoretically analyzed the self-alignment/navigation performance in the accelerometer resonance state generated by dither motion of ring laser gyroscope in LINS and verified it through simulation. As a result of analysis, it is confirmed that the amplitude of the accelerometer measurement amplified in the accelerometer resonance state is decreased in the process of sampling per the navigation calculation period and that frequency is changed by the aliasing effect too. It was also analysed that the attitude error in self-alignment is determined by the amplitude/frequency of the accelerometer measurement, the gain of the self-alignment loop, and the velocity and position error in the navigation is determined by the amplitude/frequency/phase error of the accelerometer measurement. This analysis and simulation results show that the self-alignment and navigation performance is not be degraded only when the amplification factor of the accelerometer measurement in the accelerometer resonance state is 3 or less