• Title/Summary/Keyword: 리튬 이차전지

Search Result 401, Processing Time 0.031 seconds

Study of Adhesion according to Various Surface Treatments for Lithium Ion Secondary Battery Pouch Film (다양한 표면처리에 따른 리튬이온 이차전지용 파우치 필름을 위한 접착성에 관한 연구)

  • Kim, Do Hyun;Bae, Sung Woo;Cho, Jung Min;Yoo, Min Sook;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.231-234
    • /
    • 2016
  • Pouch film is manufactured by laminating aluminum foil, polyamide film and polypropylene film with an adhesive or extrusion resin. However, a surface treatment is required for the aluminum because bonding does not occur easily between the aluminum foil and the polymer film. Thus, for this study, surface treatment experiments were performed in order to confirm the effect on adhesion strength. First, a variety of surface treatment solutions were coated on aluminum foil, and contact angle and surface morphology analysis was carried out for the surface-treated aluminum. For lamination of the surface-treated aluminum foil with polyamide film, a polyurethane base adhesive was prepared for the adhesive strength test specimens. The adhesive strength between the aluminum foil and the polyamide film of the resulting specimens was measured (UTM). With such an experiment, it was possible to evaluate the effect on adhesive strength of the various surface treatments.

Preparation and Characterization of Si-loaded Expanded Graphite as Anode Material for Lithium ion Batteries (실리콘이 함유된 팽창흑연의 제조 및 전기화학적 특성)

  • Kim, Eunkyung;Ji, Mijung;Jung, Sunghun;Choi, Byunghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.103.2-103.2
    • /
    • 2011
  • 리튬이차전지의 음극물질로서 상용화되고 있는 탄소재료중 흑연은 전기자동차에 적용하기에는 낮은 용량과 나쁜 출력특성을 갖고 있어 지금보다 두배이상의 용량과 출력특성이 좋은 음극소재의 개발이 필요하다. 또 다른 음극물질로 실리콘은 흑연에 비해 월등히 높은 이론용량을 나타내고 있지만 실리콘이 리튬이온과 만나면 부피가 4배이상 팽창하여 사이클이 진행될수록 충방전 용량이 급격히 감소하게 된다. 그래서 본 연구에서는 이 두 음극소재를 상호보완하기 위해 천연흑연을 산처리 과정을 통해 제조된 팽창흑연을 매트릭스로 사용하여 팽창흑연에 실리콘을 충진 시키는 연구를 진행하였다. 팽창흑연에 실리콘을 충진시킴으로써 1C일 때 약 650mAh/g의 용량을 나타내었으며, 50cycle이 진행된 후에도 비교적 안정한 사이클 특성을 나타내었다.

  • PDF

Characteristics of Lithium Metal Secondary Battery Using PAN Gel-electrolyte Mixed with TiO2 Ceramic Filler (TiO2 Ceramic Filler가 혼합된 젤상의 PAN 고분자 전해질을 이용한 리튬금속 이차전지의 특성)

  • Lim, Hyo-Sung;Kim, Hyung-Sun;Cho, Byung-Won;Lee, Tae-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.106-110
    • /
    • 2002
  • Gel-type polyacrylonitrile(PAN) polymer electrolytes have been prepared using ethylene carbonate(EC), propylene carbonate(PC) and dimethyl carbonate(DMC) plasticizer, $LiPF_6$ salt and $TiO_2$ ceramic filler. Electrochemical properties, such as electrochemical stability, ionic conductivity and compatibility with lithium metal and mechanical properly of polymer electrolytes were investigated. Charge/discharge performance of lithium secondary battery using these polymer electrolytes were investigated. The maximum load that the polymer electrolyte resists increased about two times as a result of adding $TiO_2$ in the polymer electrolyte containing EC and PC. Polymer electrolyte containing EC, PC and $TiO_2$ also showed ionic conductivity of $2\times10^{-3} S/cm$ at room temperature and electrochemical stability window up to 와 4.5V. Polymer electrolyte containing EC, PC, and $TiO_2$ showed the most stable interfacial resistance of $130\Omega$ during 20 days in the impedance spectra of the cells which were constructed by lithium metals as electrodes. Lithium metal secondary battery which employed $LiCoO_2$ cathode, lithium metal anode and $TiO_2$-dispersed polymer electrolyte showed $90\%$ of charge/discharge efficiency at the 1C rate of discharge.

RF 스퍼터링법을 이용한 리튬이차전지용 Li[Li0.2Mn0.54Co0.13Ni0.13]O2 양극박막의 제조 및 전기적 특성

  • Im, Hae-Na;Gong, U-Yeon;Yun, Seok-Jin;Choe, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.413-413
    • /
    • 2011
  • 최근 전기, 전자, 반도체 산업의 발전으로 전 고상 박막리튬전지는 초소형, 초경량의 마이크로 소자의 구현을 위한 고밀도 에너지원으로 각광받고 있다. 현재 양극박막은 대부분LCO(LiCoO2)계열이 이용되고 있으나, 코발트는 높은 가격과 인체 유해성 뿐만 아니라 상대적으로 낮은 용량(~140 mAh/g)등의 단점을 갖고 있어 향후 보다 고용량의 양극박막이 요구된다. 3원계 양극활물질 LiMO2(M=Co,Ni,Mn,etc.)은 우수한 충방전 효율 과 열적 안정성 뿐 아니라 277mAh/g의 높은 이론용량을 갖고 있어 고용량 양극박막으로의 적용시 고용량 박막이차전지 제작이 가능하다. 본 연구에서는 전 고상 박막 전지의 구현을 위하여 RF 스퍼터링법을 사용하여 Li[Li0.2Mn0.54Co0.13Ni0.13]O2 박막을 증착하였다. Li/MnCoNi의 몰 비율을 변화시켜 높은 전기화학적 특성을 갖는 분말을 합성하여 제조한 타겟으로 Pt/TiO2/SiO2/Si 기판위에 RF 스퍼터법을 이용하여 박막을 성장시켰다. 박막 증착 시 가스의 비율은 Ar:O2=3:1로 하고 증착 압력의 조절(0.005~0.02 torr)을 통하여 박막의 두께와 표면 특성을 조절하며 성장시켰다. 또한 박막을 다양한 온도에서($400{\sim}550^{\circ}C$) 열처리하여 결정화도와 전기화학적 특성을 측정하였다. 증착 된 박막의 구조적 특성은 X-ray diffraction(XRD) 과 scanning electron microscopy(SEM)로 관찰되었다. 박막의 전기화학적 특성 평가를 위하여 Cyclic voltammatry를 측정하여 가역성의 정도를 확인하고 WBC3000 battery cycler를 이용한 half-cell 테스트를 통하여 박막의 용량을 평가하였다.

  • PDF

Extractive Metallurgy of Lithium (리튬의 제련기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.3-15
    • /
    • 2022
  • Lithium is the lightest metal and the first metal in the periodic table. Lithium is used in a variety of applications, including the production of organolithium compounds, as an alloying addition to aluminum and magnesium, and as the anode in rechargeable lithium ion batteries especially for electronic devices and electric vehicles. Therefore, lithium is indispensable metal in our daily lives. The use of lithium continues to rise and has increased from about 14,000 tonnes per year worldwide in the 2000 to about 82,200 tonnes in the 2000. However, lithium is a representative rare metal and ranks 32nd among the abundant elements in the earth's crust. This study reviews the current status of the lithium extraction processes as well as the trend in production amount and use. Lithium is extracted by a various methods depending on the type of resources. These extraction methods are essential for the development of new recycling processes that can extract lithium from secondary lithium resources.

Analysis for Atomic Structural Deterioration and Electrochemical Properties of Li-rich Cathode Materials for Lithium Ion Batteries (리튬이차전지용 리튬과잉계 양극 산화물의 충방전 과정 중 원자 구조 열화 과정과 전기화학 특성에 대한 분석)

  • Park, Seohyeon;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.97-102
    • /
    • 2020
  • Recently, various degradation mechanisms of lithium secondary battery cathode materials have been revealed. As a result, many studies on overcoming the limitation of cathode materials and realizing new electrochemical properties by controlling the degradation mechanism have been reported. Li-rich layered oxide is one of the most promising cathode materials due to its high reversible capacity. However, the utilization of Li-rich layered oxide has been restricted, because it undergoes a unique atomic structure change during the cycle, in turn resulting in unwanted electrochemical degradations. To understand an atomic structure deterioration mechanism and suggest a research direction of Li-rich layered oxide, we deeply evaluated the atomic structure of 0.4Li2MnO3_0.6LiNi1/3Co1/3Mn1/3O2 Li-rich layered oxide during electrochemical cycles, by using an atomic-resolution analysis tool. During a charge process, Li-rich materials undergo a cation migration of transition metal ions from transition metal slab to lithium slab due to the structural instability from lithium vacancies. As a result, the partial structural degradation leads to discharge voltage drop, which is the biggest drawback of Li-rich materials.

The Status and outlook of Propulsion System for Electric Powered Personal Air Vehicles (전기 동력 Personal Air Vehicle의 추진시스템 현황 및 전망)

  • Lee, Sun-Kyoung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.183-186
    • /
    • 2011
  • In this paper, we present some results of power analyses, and weight estimation on electric propulsion systems for Personal Air Vehicles(PAV) applications. When hybrid electric propulsion is adopted, its power performance using fuel cells and batteries is inferior to that of internal combustion engines for 1,000 kg PAV. However, hybrid electric propulsion systems may replace IC engines when energy density and power density is over $0.75kW{\cdot}hr/kg$and 2.5 kW/kg, respectively.

  • PDF

A Review on Electrochemical Model for Predicting the Performance of Lithium Secondary Battery (리튬이차전지 성능 모사를 위한 전기화학적 모델링)

  • Yang, Seungwon;Kim, Nayeon;Kim, Eunsae;Lim, Minhong;Park, Joonam;Song, Jihun;Park, Sunho;Appiah, Williams Agyei;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • As the application area of lithium secondary batteries becomes wider, performance characterization becomes difficult as well as diverse. To address this issue, battery manufacturers have to evaluate many batteries for a longer period, recruit many researchers and continuously introduce expensive equipment. Simulation techniques based on battery modeling are being introduced to solve such difficulties. Various lithium secondary battery modeling techniques have been reported so far and optimal techniques have been selected and utilized according to their purpose. In this review, the electrochemical modeling based on the Newman model is described in detail. Particularly, we will explain the physical meaning of each equation included in the model; the Butler-Volmer equation, which represents the rate of electrode reaction, the material and charge balance equations for each phase (solid and liquid), and the energy balance. Moreover, simple modeling processes and results based on COMSOL Multiphysics 5.3a will be provided and discussed.

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.

The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode (고전압 리튬이차전지를 위한 LiNi0.5Mn1.5O4 양극용 전해질로써 상온 이온성 액체 전해질의 불순물 효과에 관한 연구)

  • Kim, Jiyong;Tron, Artur V.;Yim, Taeeun;Mun, Junyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • We report the effect of the impurities including water and bromide in the propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI) on the electrochemical performance of lithium ion batteries. The several kinds of PMPyr-TFSI electrolytes with different amount of impurities are applied as the electrolyte to the cell with the high potential electrode, $LiNi_{0.5}Mn_{1.5}O_4$ spinel. It is found that the impurities in the electrolytes cause the detrimental effect on the cell performance by tracing the cycleability, voltage profile and Coulombic efficiency. Especially, the polarization and Coulombic efficiency go to worse by both impurities of water and bromide, but the cycleability was not highly influenced by bromide impurity unlike the water impurity.