• Title/Summary/Keyword: 리제강 링

Search Result 6, Processing Time 0.022 seconds

A Chemical Study of the Periodic Precipitation Reaction in Natural Rocks (자연 암석에서 나타나는 주기적침전반응의 화학적 연구)

  • Jun, Sang-Ho;Han, Mi-Ae
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.491-496
    • /
    • 2007
  • This study conducted a chemical experiment on the Leisegang phenomenon, which is known to be the principle of rhyolite formation, and analyzed the results. Even if the same chemical elements precipitated, the shape of Leisegang rings was different according to the condition of medium and depending on inner electrolyte and outer electrolyte. The experiment used agar, gelatin and mung-bean jelly as media. We prepared 0.01M inner electrolyte containing agar 1%, gelatin 2% and mung-bean jelly 5% and curdled the solution at room temperature for 12 hours and, as a result, we obtained viscosity optimal for experimenting on the diffusion of outer electrolyte, and Leisegang rings appeared clearly according to the characteristic of each chemical element. In $PbI_2$ with solubility product($K_{sp}$) of $7.9{\times}10^{-9}$ the intervals of Leisegang rings caused by the reaction of inner electrolyte 0.01M KI and outer electrolyte 25% $Pb(NO_3){_2}$ were narrow between 0.01cm and 0.12cmm but increased gradually, but in with of $8.3{\times}10^{-17}$ the intervals of Leisegang rings caused by the reaction of inner electrolyte 0.01M KI and outer electrolyte 25% $AgNO_3$ were between 0.7cm and 0.45cm and decreased gradually. This suggests that, in the chemical formation of Leisegang rings, the interval and size of the rings are correlated with the solubility product of the precipitates.

Current Status of Zinc Smelting and Recycling (아연의 제련 및 리사이클링 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.30-41
    • /
    • 2019
  • Global production of zinc is about 13 million tons and zinc is the fourth-most widely used primary metal in the world following iron, aluminum and copper. When zinc is recycled to produce secondary zinc, it can save about 75 % of the total energy that is needed to produce the primary zinc from ore, and in therms of $CO_2$ emissions reduced by about 40 %. However, since zinc is mainly used for galvanizing of steel, the recycling rate of zinc is about 25 %, which is lower than other metals. The raw materials for recycling of zinc include dusts generated in the production of steel and brass, sludge in the production process of non-ferrous metals, dross in the melting of zinc ingots or hot dip galvanizing, waste batteries, and metallic scrap. Among them, steelmaking dust and waste batteries are most actively recycled up to now. Most of the recycling process uses pyrometallurgical methods. Recently, however, much attention has been given to a combined process of pyrometallurgical and hydrometallurgical processes.

Recycling of Ferrous Scraps (철스크랩의 리사이클링)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.3-16
    • /
    • 2020
  • This work provides an overview of the steel production process, pretreatment and tramp elements of scraps and recycling technology of dust generated from steelmaking process. Steel is the most common metal used by mankind, with the world production of crude steel in 2018 exceeding 1.8 billion tonnes. Recycling of ferrous scraps reduces CO2 emissions by about 42 % and saves about 60 % of energy, compared to production steel from iron ore. Steel scraps are usually recycled to both an electric arc furnace (EAF), scrap-based steelmaking and the basic oxygen furnace (BOF), in ore-based steelmaking. EAF steelmaking, which uses iron scrap as a main raw material, is changing to an energy-saving type with a device for preheating scrap. Dust generated from the steelmaking process is recycled in various ways in the steel mill to recover iron and zinc.

Trend on the Recycling Technologies on the High-efficiency Rapid Cooling Method of Ladle Furnace Slag by the Patent and Paper Analysis (특허와 논문으로 본 제강 환원슬래그의 고효율 급냉 자원순환기술 동향)

  • Kim, Jin Man;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.90-97
    • /
    • 2014
  • The artificial dry silica used as dry aggregates in domestic is collected increasing every year. It is required drying process for the production of dry aggregates, therefore, it is main culprit of the cost up of aggregates and air pollution by using fossil fuel for the solution, it is developed alternative aggregates for the replacement of dry aggregates very ungently. In this article, the patents and papers for the recycling technology on the high-efficiency rapid cooling method of ladle furnace slag were collected and analyzed. The open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) and SCI journals from 1977 to 2013 were investigated. The patents and journals were collected using key-words and filtered by the definition of the technology. The patents and journals were analyzed by the years, countries, companies, and technologies and the technical trends were discussed in this paper.

The Study on the Spherulitic Rhyolites in the northern part of Juwang Mt., Cheongsong (청송 주왕산 북부 일대의 구과상 유문암에 대한 연구)

  • 오창환;김성원;황상구;손창환;김창숙;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.103-118
    • /
    • 2004
  • In Cheongsong area, very rare spherulitic rhyolites both in Korea and foreign countries occur as dykes showing various types. The spherulites in them represent an undercooling caused by very fast cooling of the dykes in a shallow depth near to the surface and the variety of types were resulted from the difference of relative cooling rate. Cheongsong spherulitic rhyolites can be classified into five types; radiated simple spherulite, layered simple spherulite, layered multiple spherulite, radiated-layered multiple spherulite, radiating layered multiple spherulite. Radiated simple and radiating layered multiple spherulites formed by diffusion current caused by undercooling related to very fast cooling. On the other hand, layered multiple spherulites formed by relatively slow diffusion as a Liesegang ring during relatively slow cooling. If the cooling rate is between the two cases, layered simple spherulites formed. This interpretation indicates that Chrysanthemum, Dandelion, Dahlia and Sunflower types which are included in radiated simple or radiating layered multiple spherulites formed in the dykes with the fastest cooling rate in Cheongsong area while Peony, Rose and Innominate types classified as layered multiple spherulite formed in the dykes with the relatively slowest cooling rate. At the cooling rate between them, Apricot type spherulite formed. The K-Ar age-dating for Cheongsong spherulitic rhyolites indicate them to be formed between 48 and 50 Ma. The Cheongsong rhyolites are very valuable for research and preservation because of their rarity, beauty and diversity.

Smelting and Refining of Silicon (실리콘의 제련과 정제)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.3-11
    • /
    • 2022
  • Silicon is the most abundant metal element in the Earth's crust. Metallurgical-grade silicon (MG-Si) is an important metal that has wide industrial applications, such as a deoxidizer in the steelmaking industry, alloying elements in the aluminum industry, the preparation of organosilanes, and the production of electronic-grade silicon, which is used in the electronics industry as well as solar cells. MG-Si is produced industrially by the reduction smelting of silicon dioxide with carbon in the form of coal, coke, or wood chips in electric arc furnaces. MG-Si is purified by chemical treatments, such as the Siemens process. Most single-crystal silicon is produced using the Czochralski method. These smelting and refining methods will be helpful for the development of new recycling processes using secondary silicon resources.