• Title/Summary/Keyword: 리소그라피

Search Result 161, Processing Time 0.032 seconds

Nano imprinting lithography fabrication for photonic crystal waveguides (나노 임프린트 공정에 의한 광자결정 도파로 제조공정)

  • Jung Une-Teak;Kim Chang-Soek;Jeong Myung-Yung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.498-501
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for manipulation of light. The existence of a photonic bandgap, a frequency range in which propagation of light is prevented in all direction, makes photonic crystal very useful in application where spatial localization of light is required for waveguide, beam splitter, and cavity. But fabrication of 3 dimensional photonic crystal is still difficult process. a concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air, and perforated with 2 dimensional lattice of hole. We show that the polymer slabs suspended in air with triangular lattice of air hole can exhibit the in-plane photonic bandgap for TE-like modes. The fabrication of Si master with pillar structure using hot embossing process was investigated for 2 dimensional low-index-contrast photonic crystal waveguide.

  • PDF

Fabrication and Characteristics of Integrated Nb DC SQUID (집적화된 Nb DC SQUID 소자의 제작 및 특성)

  • Lee, Yong-Ho;Gwon, Hyeok-Chan;Kim, Jin-Mok;Park, Jong-Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.277-281
    • /
    • 1992
  • We have designed, fabricated and tested an integrated planar DC SQUID which incorporates input coil and mofulation coil in thin film structure. The SQUID uses Nb /Al-oxide /Nb Josephson junctions and Pd shunt resistors, and the SQUID loop incorporates two rings connected in series forming figure '8' structure and has the advantage of a negligibly small circulating current for the spatially homogeneous noise fields. The devices were fabricated using photolithographic technique, RF magnetron sputtering, anodic oxidation for insulation and lift-off process. The preliminary test of the fabricated SQUID at 4.2 K showed that the flux-voltage characteristics were smooth enough to adopt standard readout system, and the voltage noise was too small to be measured by direct method and so the white noise was thought to be less than $10^{-4}\;{\phi}_o/\;\sqrt{H_z}$.

  • PDF

Development of Optical Illusion Design Pattern for Furniture Using a UV Curing Resin (UV 경화성 수지를 이용한 가구용 옵티컬 일루젼 디자인 패턴 개발)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • The design trend is changed with the times. The design trend of recent 21 century is eco-friendly design. The optical illusion design is a new trend of digital convergence era. In this study, optical illusion patterns were designed for furniture with eco-friendly UV-curable resin. The micro-patterns of optical illusion design were fabricated with the micro-mold which was mastered using a semiconductor micro-fabrication process by photolithography technique. The micro-patterns of optical illusion design were manufactured on PET film with a roll-to-roll process using a UV-curable resin. The manufactured PET film of optical illusion micro-pattern exhibits hologram effect, optical illusion effect, and texture of metal with the backside digital printing of metal tone. The furniture of new design concept so-called emotional furniture was manufactured with the various optical illusion design patterns. The optical illusion design patterns by UV mold prospect a new trend of interior design materials.

The present status and future aspects of the market for printed electronics (인쇄전자 산업시장의 현황과 전망)

  • Park, Jung-Yong;Park, Jae-Sue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.263-272
    • /
    • 2013
  • Printed electronics creates electrically functional devices by printing on variety of substrates. Printing typically uses common printing equipment or other low-cost equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography and inkjet. Compared to conventional manufacturing of microelectronics, printed electronics is characterized by simpler and more cost-effective fabrication of high and low volume products. Now there is huge effort towards printing many other more functional components, from displays to transistors to photovoltaic cells, using the full range of printing technologies - from inkjet to roll to roll analogue print techniques. The market for printed electronics will rise from $1.99 billion in 2010 to $55.10 billion in 2020. In 2030, this industry could be $300 billion - larger than the silicon semiconductor industry - from lighting to displays[8].

Micropatterning by Low-Energy Focused ton Beam Lithography(FIBL) (저에너지 집속이온빔리소그라피(FIBL)에 의한 미세패턴 형성)

  • 이현용;김민수;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.224-227
    • /
    • 1995
  • The micro-patterning by a Bow energy FIB whish has been conventionally utilized far mask-repairing was investigated. Amorphous Se$\_$75/Gee$\_$25/ resist irradiated by 9[keV]-defocused Ga$\^$+/ ion beam(∼10$\^$15/[ions/$\textrm{cm}^2$]) resulted in increasing the optical absorption, which was also observed also in the film exposed by an optical dose of 4.5${\times}$10$\^$20/[photons/$\textrm{cm}^2$]. The ∼0.3[eV] edge shift for ion-irradiated film was about twice to that obtained for photo-exposed. These large shift could be estimated as due to an increase in disorder from the decrease in the sloop of the Urbach tail. For Ga$\^$+/ FIB irradiation with a relatively low energy, 30[keV] and above the amount of dose of 1.4${\times}$10$\^$16/[ions/$\textrm{cm}^2$], the irradiated region in a-Se$\_$75/Ge$\_$25/ resist was perfectly etched in acid solution for 10[sec], which is relatively a short development time. A contrast was about 2.5. In spite of the relatively low incident energy,∼0.225[$\mu\textrm{m}$] pattern was clearly obtained by the irradiation of a dose 6.5${\times}$10$\^$16/[ions/$\textrm{cm}^2$] and a scan diameter 0.2[$\mu\textrm{m}$], from which excellent results were expected fur incident energies above 50[keV] which was conventionally used in FIBL.

  • PDF

Photolithographic Properties of Photosensitive Ag Paste for Low Temperature Cofiring (저온동시소성용 감광성 은(Ag)페이스트의 광식각 특성)

  • Park, Seong-Dae;Kang, Na-Min;Lim, Jin-Kyu;Kim, Dong-Kook;Kang, Nam-Kee;Park, Jong-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.313-322
    • /
    • 2004
  • Thick film photolithography is a new technology in that the lithography process such as exposure and development is applied to the conventional thick film process including screen-printing. In this research, low-temperature cofireable silver paste, which enabled the formation of thick film fine-line using photolithographic technology, was developed. The optimum composition for fine-line forming was studied by adjusting the amounts of silver powder, polymer and monomer, and the additional amount of photoinitiator, and then the effect of processing parameter such as exposing dose on the formation of fine-line was also tested. As the result, it was found that the ratio of polymer to monomer, silver powder loading, and the amount of photoinitiator were the main factors affecting the resolution of fine-line. The developed photosensitive silver paste was printed on low-temperature cofireable green sheet, then dried, exposed, developed in aqueous process, laminated, and fired. Results showed that the thick film fine-line under 20$\mu\textrm{m}$ width could be obtained after cofiring.

Characteristics of nanolithograpy process on polymer thin-film using near-field scanning optical microscope with a He-Cd laser (He-Cd 레이저와 근접장현미경을 이용한 폴리머박막 나노리소그라피 공정의 특성분석)

  • Kwon S. J.;Kim P. K.;Chun C. M.;Kim D. Y.;Chang W. S.;Jeong S. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.37-46
    • /
    • 2004
  • The shape and size variations of the nanopatterns produced on a polymer film using a near-field scanning optical microscope(NSOM) are investigated with respect to the process variables. A cantilever type nanoprobe having a 100nm aperture at the apex of the pyramidal tip is used with the NSOM and a He-Cd laser at a wavelength of 442nm as the illumination source. Patterning characteristics are examined for different laser beam power at the entrance side of the aperture($P_{in}$), scan speed of the piezo stage(V), repeated scanning over the same pattern, and operation modes of the NSOM(DC and AC modes). The pattern size remained almost the same for equal linear energy density. Pattern size decreased for lower laser beam power and greater scan speed, leading to a minimum pattern width of around 50nm at $P_{in}=1.2{\mu}W\;and\;V=12{\mu}m/s$. Direct writing of an arbitrary pattern with a line width of about 150nm was demonstrated to verify the feasibility of this technique for nanomask fabrication. Application on high-density data storage is discussed.

  • PDF

Superresolution of Optical Imaging System (광결상계의 초분해능)

  • 조영민;김종태;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.349-355
    • /
    • 1994
  • Superrsolution of an optical imaging system, which resolves $\epsilon_O$ (half width of the square top amplitude impulse function) less than the Rayleigh's resolution limit $\epsilon_R$, is theoretically treated by using the diffraction theory, and an experimental system is proposed. Initially superresolution is stated as an inverse problem, and an integral equation is derived as a function of parameter $\beta$, which is positive. The integration is numerically carried out for the given aperture and those given values of $\beta$, which is 1, 5, 10, 15, and 20. 1/2$\times$FWHM's of the amplitude impulse functions are meassured for the cases of diffrent value of {J and in the case of $\beta=5$, the half-width already approaches to $\epsilon_O=0.1$,urn, which is, in the case of the present work, one fifth of the Rayleigh's resolution limit. It is found both the pupil function and the phase of the Huygens wave are to be modified, and theories of the pupil function modulation plate and the phase modulation hologram plate are also presented. The result obtained may be useful in ultrafine optical lithography.graphy.

  • PDF

Transmission Grating Formation in High Refractive-index Amorphous Thin Films Using Focused-Ion-Beam Lithography (접속이온빔 리소그라피를 이용한 고굴절 비정질 박막 투과 격자 형성)

  • Shin, Kyung;Kim, Jin-Woo;Park, Jeong-Il;Lee, Hyun-Yong;Lee, Young-Jong;Chung, Hong-Bay
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.6-10
    • /
    • 2001
  • In this study, we investigated the optical properties of sub-wavelength a-Si thin film transmission gratings, especially the polarization effect, the phase difference and the birefringence by using linearly polarized He-Ne laser beam (632.8nm). The a-Si transmission grating of the thickness $of < 0.1 \mum$ with four-type period($\Lambda = 0.4 \mum and 0.6 \mum$ for sub-wavelength and $\Lambda = 1.0 \mum and 1.4 \mum$ for above-wavelength) on quartz substrates have been fabricated using 50 KeV Ga+ Focused-Ion-Beam(FIB) Milling and $CF_4$Reactive-Ion-Etching(RIE) method. Finally, we obtained the trating array of a-Si thin film with a period $0.4 \mum, 0.6 \mum, 1.0 \mum, 1.4 \mum$ which have nearly equal finger spacing and width, sucessfully. Especially, for gratings with $\Lambda = 0.6 \mum(linewidth=0.25 \mum, linespace=0.35\mum), the \etamax at \theta_в=17.0^{\circ}$ is estimated to be 96%. As the results, we believe that the sub-wavelength grating arrayed a-Si thin film has the applicability as the optical device and components.

  • PDF

InGaN/GaN 양자 우물 구조를 갖는 마이크로 피라미드 구조 발광다이오드의 구현과 광.전기적 특성 분석

  • Kim, Do-Hyeong;Bae, Si-Yeong;Lee, Dong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.143-144
    • /
    • 2011
  • 최근 광전자 분야에서는 미래 에너지 자원에 대한 관심과 함께 GaN 기반 발광다이오드에 대한 연구가 활발히 진행되고 있다. 특히 InGaN/GaN 양자 우물 구조는 푸른색, 녹색 발광다이오드 구현에 있어 우수한 물질적 특성을 가지고 있다고 알려져 있다. 하지만 우수한 물질적 특성에도 불구하고 고인듐 고품위 막질 성장의 어려움으로 인해 높은 효율의 녹색 발광다이오드 구현하는 것은 여전히 어려운 실정이다. 이를 극복하기 위한 대안 중에 하나인 선택 영역 박막성장법(Selective Area Growth)은 마스크 패터닝을 통해 열린 영역에서만 박막을 성장하는 방법으로써 인듐 함량을 향상 시킬 수 있는 방법으로 주목 받고 있다. 선택 영역 박막 성장법을 이용하여 GaN를 성장하기 위해 그림 1의 공정을 통하여 n-GaN층 위에 SiO2 마스크를 포토리소그라피와 Reactive Ion Etching (RIE)를 이용한 건식 식각 공정을 통해 형성한 후 Metal Organic Chemical Vapor Deposition (MOCVD) 장비를 이용하여 선택적으로 에피를 성장하였다. 성장된 마이크로 피라미드 발광다이오드 구조는 n-GaN 피라미드 구조위에 양자우물 및 p-GaN을 성장함으로써 p-GaN/MQW/n-GaN 구조를 갖는다. 이렇게 생성된 피라미드 구조의 에피를 이용하여 발광다이오드를 제작한 후 그에 대한 전기적, 광학적 특성을 측정하였다. 2인치 웨이퍼의 중심을 원점 좌표인 (0,0)으로 설정하였을 때 2인치 웨이퍼에서 좌표에 해당하는 위치에서의 Photoluminescence (PL) 측정한 결과 일반적인 구조의 발광다이오드의 경우 첨두치가 441~451nm인데 반해 피라미드 구조의 발광다이오드의 경우 첨두치가 558nm~563nm 임을 알 수 있었다. 이를 통해 피라미드 구조 발광다이오드의 경우 일반적인 구조의 발광다이오드에 비해 인듐의 함유량을 증가시킬 수 있다는 것을 알 수 있다. 본 논문에서는 선택 영역 박막 성장법을 이용하여 마이크로 피라미드 InGaN/GaN 양자 우물 구조 구현과 광 전기적 특성에 대해 더 자세히 논의 하도록 하겠다.

  • PDF