• Title/Summary/Keyword: 리브 변화

Search Result 55, Processing Time 0.024 seconds

Property Changes of Gas Diffusion Layer in a PEFC by Compression (체결압이 고분자연료전지 가스확산층에 미치는 영향)

  • Ahn, Eun-Jin;Yoon, Young-Gi;Park, Gu-Gon;Park, Jin-Soo;Lee, Won-Yong;Han, Hak-Soo;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.347-352
    • /
    • 2006
  • 분자전해질연료전지 내의 다공성 기체확산층은 반응가스의 확산과 전자이동통로의 역할을 수행할 뿐만 아니라 전기화학반응에 의해 공기극에서 생성된 수분(기상 혹은 액상)을 반응면으로부터 분리판 채널 방향으로 이동시켜 배출시키는 중요한 역할을 한다. 따라서 물관리를 통한 성능향상을 위해서는 기체 확산층의 구조 및 재료특성에 대한 심도 릴은 연구가 필요하다. 실제 단위전지 체결시 기체확산층은 분리판의 리브(rib)에 의해 눌리게 되며, 그 부분의 기공 크기 분포의 변화를 야기한다. 또한 리브 전단부분에서 탄소 섬유가 손상을 입으며, 탄소 섬유를 감싸고 있는 PTFE coating이 벗겨지게 되어 표면화학적 특성이 달라진다. 본 연구에서는 단위전지 체결 시 분리판에 의해 눌리는 기체확산층의 기공 크기 분포 변화를 측정하였으며, 기공의 소수성에서 친수성으로의 변화를 알아보았다. Mercury 기공 측정기와 PMI 기공 측정기는 큰 기공 분포의 변화에, 질소의 흡/탈착을 이용한 BET 방식은 작은 크기의 기공 분포 변화 관찰에 사용되었다. 체결압에 의한 탄소섬유의 구조적 변화와 아울러 표면의 습윤 정도의 변화를 XPS와 물/알콜 Uptake를 이용해 알아보았다. 이 연구를 바탕으로 물관리를 통한 연료전지 성능 향상을 위한 최적 GDL 선정에 기반이 되는 자료를 도출하였다.

Ultimate Strength of Anchorage Zone according to Geometric Parameters of Post-Tensioning Anchorage using a Finite Element Method (유한요소해석을 통한 포스트텐션 정착구 형상 변수의 정착부 극한강도 영향 분석)

  • Kwon, Yangsu;Kim, Jin-Kook;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.317-324
    • /
    • 2015
  • The design of anchorage zone in a post-tensioned member has been started from the evaluation of the ultimate resisting capacity as well as the maximum bursting stress developed, and a lot of design codes including AASHTO and PTI describe their design equations to determine the bearing strength of concrete at the anchorage zone. However, these equations usually give conservative results because their derivation is based on the simple anchorage with a wide bearing plate in the surface without any additional consideration for the load transfer mechanism through transverse ribs on the anchorage. To assess the influence of geometric parameters related to the transverse ribs on the resisting capacity of anchorage block, experiments and analysis are conducted. After verifying the validity of numerical model conducted through correlation studies between experimental and analytical results, parametric studies with changes in the transverse ribs are followed and design recommendations for the anchorage block are suggested from the numerical results obtained.

Compression Test of Subelement and Tension Test of Hoop Ring for Stiffness Evaluation of Conical Composite Lattice Structures (콘형 복합재 격자 구조의 강성 평가를 위한 Subelement의 압축 시험 및 후프 링의 인장 시험)

  • Jeon, Min-Hyeok;Kong, Seung-Taek;No, Hae-Ri;Kim, In-Gul;Lee, Sang-Woo
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.169-175
    • /
    • 2020
  • The compression and tension test were performed to evaluate the stiffnesses of the conical composite lattice structures and results of test were compared with finite element analysis results. Because of difficulty to perform simple tension and compression test due to conical shape, suitable specimens and jig for test were made. Subelements extracted from the structure were prepared for compression test. Compression test of subelement was performed and compressive strains in fiber direction were measured. Compressive stiffness of the helical rib was verified by finite element analysis results. For stiffness of hoop rib, hoop ring specimens were extracted from the structure. Tension test of hoop ring specimen was performed to apply bending deformation to hoop rib. Stiffness of hoop rib was verified by finite element model considering various fiber volume fraction in thickness direction.

Finite Element Analysis of Inverted Umbrella-type Hyperbolic Paraboloid Shell (역우산형 쌍곡포물선 쉘의 유한요소해석)

  • Kwon, Hung-Joo;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • This study presents the comparisons between the analysis results based on membrane theory and finite element analysis for the inverted umbrella-type hyperbolic paraboloid shell structure. The effects of the roof angle on the roof deflections, member forces of edge beams and ribs, and shell stress are also investigated with various roof angles. Results show that the membrane theory overestimates the member forces of edge beams and ribs. On the contrary, the shell stresses are underestimated in the membrane theory when compared to the results from the finite element analysis. The deflections of roof slabs by finite element analysis show drastic increasement as the roof angle decreases.

An Study on the Stiffened Effect of K-type Tubular Connection (강관 K형 접합부의 보강효과에 관한 연구)

  • Kim, Woo Bum;Lee, Young Jung;Kim, Kap Sun;Chung, Soo Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.609-619
    • /
    • 2001
  • It is almost impossible to evaluate the ultimate strength theoretically, because the behavior of Gusset-Tube connection stiffened with rib-plate is considerably complicate. Therefore in this study a finite element model of gusset-tube connection stiffened with rib-plate was established. The validity of finite element analysis was examined through comparing with previous experimental result and the behavior and strength of the connection was examined. From the parametric study considering lateral force ratio, eccentricity, gusset length based on finite element model, the stiffened effect was estimated and stiffening method was proposed.

  • PDF

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Investigation of Impact Factor Variation of Open-Spandrel Arch Bridges According to Spacing Ratio of Vertical Members (수직재 간격비에 따른 개복식 상로 아치교의 충격계수 변화 분석)

  • Hong, Sanghyun;Oh, Jongwon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.45-52
    • /
    • 2020
  • An open-spandrel arch bridges, which consists of slab deck, arch rib, and vertical members, shows a various level of moment and axial forces according to the supporting boundary condition of arch rib and vehicle speeds. Also, the definition of impact factor accepts any kind of response parameters, not only displacement response at slab deck. The present study considers concrete open-spandrel arch bridges constrained with fixed conditions at the ends of arch rib and investigates the impact factor variation due to moving load speeds, response parameters, measuring locations, and vertical member spacing ratio of the bridges. The results of Reference model show that the impact factor is biggest when the reactive moment resulted at the vehicle-inducing opposite end of the arch rib is applied. The peak impact factor is a similar level obtained for the middle of the span adjacent to the slab deck center, but it is 19% higher than the peak impact factor calculated using the axial force developed at the same location. Reducing the spacing ratio of the vertical members as half as the reference model whose ratio is 1/9.375 produces a similar level of the moment-based peak impact factor compared to the reference model. However, when the spacing ratio is doubled, the peak impact factor is 4.4 times greater than the reference model.

A Study for Relation Between Fatigue and Structural Members on Othortropic Steel Deck (직교이방성 강바닥판 피로와 구조부재의 관계에 대한 연구)

  • Park, Jong In;Hong, Sung Nam;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.41-50
    • /
    • 2012
  • Improvement of steel material quality made fatigue problems more critical than failure of the material itself. In many cases, cracks on the welded parts of steel deck bridges are reported against the failure of steel materials. And the cracks are caused by alternate stress on the welded parts due to live loads on the bridge. The range of alternate stress on the welded part is related to property of the sections which compose othortropic steel deck. Othortropic steel deck is mainly composed of deck plate, ribs and floor beams, wearing surface, etc. In this paper, a methology to estimate the alternate stress for pthortropic steel deck using Pelikan-Esslinger method and signed Von-Mises equivalent stress is proposed first. Parametric study served references for fatigue stresses when designing or repairing othortropic steel deck bridges, by analyzing relationship between alternate stress range and properties of steel deck members.

Structured lights Calibration for Depth Map Acquisition System (깊이맵 획득을 위한 가시구조광 캘리브레이션)

  • Yang, Seung-Jun;Choo, Hyon-Gon;Cha, Jihun;Kim, Jinwoong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.242-243
    • /
    • 2011
  • 구조광을 이용하는 깊이 정보 획득 방법에서 코드화된 패턴의 색상 정보는 촬영된 영상으로부터 패턴을 해석하여 패턴의 위상 변화량으로부터 물체의 깊이 정보를 찾기 위함으로 구조광 패턴들이 대상에 정확하게 투영되는 것이 중요하다. 그러나 프로젝터의 특성에 따라 패턴의 RGB 채널들이 종종 좌표에서 어긋나는 현상이 발생하게 된다. 본 논문에서는 프로젝터의 특성에 따른 컬러 구조광의 캘리브레이션을 위한 방법을 제안한다. 제안하는 방법은 시변화 가시구조광 시스템의 캘리브레이션 과정 중에서 투사된 영상으로부터 RGB 패턴 채널을 추출하고, 추출된 패턴으로부터 각 RGB 채널에 대한 히스토그램을 통하여 패턴 채널이 어느 방향으로 번져 나갔는지를 파악하여 원 패턴에 대한 재정렬을 수행한다. 본 논문의 실험결과에 따르면, 기존의 방법에 비해 간단한 방법으로 가시구조광 패턴에 대한 캘리브레션을 수행할 수 있음을 보여준다.

  • PDF

Object Tracking Algorithm using Temporal Wavelet (Temporal 웨이브릿을 이용한 물체 추적 알고리즘)

  • Chang, Do-Im;Kim, Do-Nyun;Kang, Min-Sook;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2843-2845
    • /
    • 1999
  • Temporal 웨이브릿 변환은 2차원 이미지 시퀀스 즉, 프레임 사이의 시간적 변화를 포함한다. Temporal 웨이브릿 변환은 우선 2차원 이미지를 프레임 단위로 행방향, 열방향의 순서로 웨이브릿 변환을 수행한 후 원영상의 1/2 해상도의 영상 프레임 시퀀스를 시간축 방향으로 웨이브릿 변환을 수행한다. Temporal Wavelet 변환의 결과로 나온 계수는 각 프레임의 특성과 프레임과 프레임 사이의 특성을 포함한다. 본 논문에서는 이 Temporal 웨리브릿 변환 결과로 나온 계수의 특성을 이용하여 물체의 움직임을 추적하는 Division Rule을 제시하고, 더욱 정확한 결과를 얻기 위해 Division Rule이 적용된 결과에 실험적으로 최적화된 가중치를 결정하여 컨벌루션을 적용한다.

  • PDF