• Title/Summary/Keyword: 리뷰 포스팅

Search Result 6, Processing Time 0.02 seconds

Identifying Voluntary Shadow Workers' Motivation and Behavioral Processes for Posting Online Reviews (자발적 그림자노동자의 온라인 리뷰 포스팅 동기와 행동과정 규명)

  • Sang Cheol Park;Sung Yul Ryoo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.23-43
    • /
    • 2024
  • Nowadays, online reviews have become a common word of mouth that many users produce and consume. Posting online reviews is a kind of job that consumers do themselves. Since posting online reviews is not mandatory, it entirely relies on the consumer's voluntary willingness. In this respect, this study aims to describe the motivation for posting online reviews and their behavior processes, such as why online reviewers generate reviews and what types of reviews they create. In this study, we have conducted an in-depth study with 18 participants who have experience in posting reviews. By analyzing interview manuscripts from the grounded theory method approach, we have ultimately presented motivating factors for review posting (mutual reciprocity, material rewards), determinants of review browsing (trust toward review contents, preference for review format), and shadow work (a job that must be done, voluntary data production, consumer's share). We have also proposed the dynamics between core dimensions for theorizing a cycle process of review production and consumption. Our findings could bridge the gap in the existing online review research and offer practical implications for platform companies that need review management.

The Analysis of the Relationship between the Review Scale and Posting Information of Company and Purchasing Patterns -Focusing on Amazon and Google Users (기업의 리뷰척도 및 포스팅 정보와 구매패턴과의 관계분석 -아마존 구글 유저를 중심으로)

  • Kim, Dong-Il;Choi, Seung-Il
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.153-160
    • /
    • 2019
  • In this study, The purpose of this study is to analyze how the rating scale and review contents attributes of social network-based services and products affect consumer purchasing patterns. information provided by screening the main factors. These analyzes are closely and quickly integrated between individuals and businesses, and enable to analyze the transaction that the impact of changing consumers on consumption and purchasing through the usefulness and a priori estimates of reviews and ratings at this time when networks and smart technologies are involved in a wide range of consumer activities. For this study, hierarchical analysis (AHP) and delphi (Delphi) methods applied to classify the high end variables into usefulness, technicality and value, Each subvariable was grouped into three factors and analyzed for importance through evaluation weights. As a result, we could analyze the importance of durability, usefulness, technological innovation, and cost and quality of value. Therefore, this study is expected to provide supplementary and additional useful information to consumers and companies participating in economic activities in various ways by simultaneously analyzing the review score and the reliability of posting information provided by verifying the main factors.

A Technique for Product Effect Analysis Using Online Customer Reviews (온라인 고객 리뷰를 활용한 제품 효과 분석 기법)

  • Lim, Young Seo;Lee, So Yeong;Lee, Ji Na;Ryu, Bo Kyung;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.9
    • /
    • pp.259-266
    • /
    • 2020
  • In this paper, we propose a novel scheme for product effect analysis, termed PEM, to find out the effectiveness of products used for improving the current condition, such as health supplements and cosmetics, by utilizing online customer reviews. The proposed technique preprocesses online customer reviews to remove advertisements automatically, constructs the word dictionary composed of symptoms, effects, increases, and decreases, and measures products' effects from online customer reviews. Using Naver Shopping Review datasets collected through crawling, we evaluated the performance of PEM compared to those of two methods using traditional sentiment dictionary and an RNN model, respectively. Our experimental results shows that the proposed technique outperforms the other two methods. In addition, by applying the proposed technique to the online customer reviews of atopic dermatitis and acne, effective treatments for them were found appeared on online social media. The proposed product effect analysis technique presented in this paper can be applied to various products and social media because it can score the effect of products from reviews of various media including blogs.

An Empirical Study on the Relationship between the Pnline WOMs and the Number of Audience of Successful Films (흥행영화의 온라인 구전패턴과 관객수의 관계에 대한 실증연구)

  • Hwang, Yena;Nam, Yoonjae
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.147-162
    • /
    • 2019
  • This study investigates the relationship between the online WOMs(such as volume of blogs, articles, reviews, searches) and the number of audience of successful film.The results are as follow: Frist, using a curve-estimation method, the results show that the longitudinal trends of the online WOMs can be best described by a cubic indicating. Second, using panel analysis in model(t) the volume of blogs, reviews, and searches is positively associated with the number of audience. All of the variables' coefficient are significant. However the volume of articles is negatively related to the number of audience with a significant coefficient.

A Study on the Analysis of Park User Experiences in Phase 1 and 2 Korea's New Towns with Blog Text Data (블로그 텍스트 데이터를 활용한 1, 2기 신도시 공원의 이용자 경험 분석 연구)

  • Sim, Jooyoung;Lee, Minsoo;Choi, Hyeyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.89-102
    • /
    • 2024
  • This study aims to examine the characteristics of the user experience of New Town neighborhood parks and explore issues that diversify the experience of the parks. In order to quantitatively analyze a large amount of park visitors' experiences, text-based Naver blog reviews were collected and analyzed. Among the Phase 1 and 2 New Towns, the parks with the highest user experience postings were selected for each city as the target of analysis. Blog text data was collected from May 20, 2003, to May 31, 2022, and analysis was conducted targeting Ilsan Lake Park, Bundang Yuldong Park, Gwanggyo Lake Park, and Dongtan Lake Park. The findings revealed that all four parks were used for everyday relaxation and recreation. Second, the analysis underscores park's diverse user groups. Third, the programs for parks nearby were also related to park usage. Fourth, the words within the top 20 rankings represented distinctive park elements or content/programs specific to each park. Lastly, the results of the network analysis delineated four overarching types of park users and the networks of four park user types appeared differently depending on the park. This study provides two implications. First, in addition to the naturalistic characteristics, the differentiation of each park's unique facilities and programs greatly improves public awareness and enriches the individual park experience. Second, if analysis of the context surrounding the park based on spatial information is performed in addition to text analysis, the accuracy of interpretation of text data analysis results could be improved. The results of this study can be used in the planning and designing of parks and greenspaces in the Phase 3 New Towns currently in progress.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.