• 제목/요약/키워드: 리뷰 생성기

검색결과 11건 처리시간 0.021초

KoGPT2를 이용한 쇼핑몰 리뷰 생성기 (Shopping Mall Review Generator usin KoGPT2)

  • 박규현;권희연
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.31-33
    • /
    • 2022
  • 쇼핑몰 리뷰 생성기는 사용자로 하여금 사용자를 대신해서 리뷰를 생성할 수 있는 기술이고, 옷 상태, 배송 상태, 사이즈와 관련된 세 가지의 카테고리를 이용하여 부분마다 점수를 부여하여 점수에 맞는 리뷰를 생성할 수 있도록 하는 기술이다. 해당 리뷰 생성기는 점수마다 생성되는 리뷰가 달라지기 때문에 다양한 리뷰 생성을 원하는 웹, 앱 쇼핑몰 사이트에서 적용이 가능한 기술이다. 본 논문에서는 KoGPT2를 이용한 리뷰 생성과 카테고리와 점수에 따른 다르게 생성되는 리뷰의 방식을 제안한다. 그리고 두 방식을 결합한 리뷰 생성의 방식을 제안한다. 제안하는 방식들은 카테고리고리 마다 학습하는 모델을 다르게 적용하고 있다.

  • PDF

명제화된 어트리뷰트 택소노미를 이용하는 나이브 베이스 학습 알고리즘 (Naive Bayes Learner for Propositionalized Attribute Taxonomy)

  • 강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.406-409
    • /
    • 2008
  • 본 논문에서는 명제화된 어트리뷰트 택소노미를 이용하여 간결하고 강건한 분류기를 생성하는 문제를 고려한다. 이 문제를 해결하기 위해 명제화된 어트리뷰트 택소노미(Propositionalized Attribute Taxonomy)를 이용하는 나이브 베이스 학습 알고리즘(Naive Bayes Learner)인 PAT-NBL을 소개한다. PAT-NBL은 명제화 된 어트리뷰트들의 택소노미를 선험 지식으로 이용하여 간결하고 정확한 분류기를 귀납적으로 학습하는 알고리즘이다. PAT-NBL은 주어진 택소노미에서 지역적으로 최적의 컷(cut)을 찾아내기 위해 하향식 탐색과 상향식 탐색을 사용한다. 찾아낸 최적의 컷은 명제화 된 어트리뷰트 택소노미와 데이터로부터 그에 상응하는 인스턴스 공간(instance space)을 구성할 수 있게 해준다. University of California-Irvine (UCI) 저장소의 기계학습 벤치마크 데이터에 대한 실험 결과를 보면, 제안된 알고리즘이 표준적인 나이브 베이스 학습 알고리즘에 의해 만들어진 분류기들과 비교해 볼 때, 가끔은 보다 간결하고 더 정확한 분류기를 생성해 낸다는 사실을 알 수 있었다.

  • PDF

명제화된 어트리뷰트 택소노미를 이용하는 나이브 베이스 학습 알고리즘 (Propositionalized Attribute Taxonomy Guided Naive Bayes Learning Algorithm)

  • 강대기;차경환
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2357-2364
    • /
    • 2008
  • 본 논문에서는 명제화된 어트리뷰트 택소노미를 이용하여 간결하고 강건한 분류기를 생성하는 문제를 고려한다. 이 문제를 해결하기 위해 명제화된 어트리뷰트 택소노미(Propositionalized Attribute Taxonomy)를 이용하는 나이브 베이스 학습 알고리즘(Naive Bayes Learner)인 PAT-NBL을 소개한다. PAT-NBL은 명제화된 어트리뷰트들의 택소노미를 선험 지식으로 이용하여 간결하고 정확한 분류기를 귀납적으로 학습하는 알고리즘이다. PAT-NBL은 주어진 택소노미에서 지역적으로 최적의 컷(cut)을 찾아내기 위해 하향식 탐색과 상향식 탐색을 사용한다. 찾아낸 최적의 컷은 명제화된 어트리뷰트 택소노미와 데이터로부터 그에 상응하는 인스턴스 공간(instance space)을 구성 할 수 있게 해준다. University of California-Irvine (UCI) 저장소의 기계학습 벤치마크 데이터에 대한 실험 결과를 보면, 제안된 알고리즘이 표준적인 나이브 베이스 학습 알고리즘에 의해 만들어진 분류기들과 비교해 볼 때, 가끔은 보다 간결하고 더 정확한 분류기를 생성해 낸다는 사실을 알 수 있었다.

Plug and Play Language Model을 활용한 대화 모델의 독성 응답 생성 감소 (Reducing Toxic Response Generation in Conversational Models using Plug and Play Language Model)

  • 김병주;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.433-438
    • /
    • 2021
  • 대화 시스템은 크게 사용자와 시스템이 특정 목적 혹은 자유 주제에 대해 대화를 진행하는 것으로 구분된다. 최근 자유주제 대화 시스템(Open-Domain Dialogue System)에 대한 연구가 활발히 진행됨에 따라 자유 주제를 기반으로 하는 상담 대화, 일상 대화 시스템의 독성 발화 제어 생성에 대한 연구의 중요성이 더욱 커지고 있다. 이에 본 논문에서는 대화 모델의 독성 응답 생성을 제어하기 위해 일상 대화 데이터셋으로 학습된 BART 모델에 Plug-and-Play Language Model 방법을 적용한다. 공개된 독성 대화 분류 데이터셋으로 학습된 독성 응답 분류기를 PPLM의 어트리뷰트(Attribute) 모델로 활용하여 대화 모델의 독성 응답 생성을 감소시키고 그 차이를 실험을 통해 정량적으로 비교한다. 실험 결과 어트리뷰트 모델을 활용한 모든 실험에서 독성 응답 생성이 감소함을 확인하였다.

  • PDF

자발적 그림자노동자의 온라인 리뷰 포스팅 동기와 행동과정 규명 (Identifying Voluntary Shadow Workers' Motivation and Behavioral Processes for Posting Online Reviews)

  • 박상철;류성열
    • 경영정보학연구
    • /
    • 제26권2호
    • /
    • pp.23-43
    • /
    • 2024
  • 온라인 리뷰는 많은 사람이 생성하고 이를 수용하는 일상화된 구전이 되었다. 온라인 리뷰를 남기는 행위는 소비자가 스스로 해야 하는 일이다. 소비자의 온라인 리뷰 포스팅은 강제성이 없으며, 온전히 소비자의 자발적 의지에 달려 있다. 이러한 맥락에서 본 연구의 목적은 리뷰어들이 왜 리뷰를 남기고, 어떠한 형태의 리뷰를 생산하는지 등의 온라인 리뷰 포스팅 동기와 행동 과정을 기술하는 데 있다. 이를 위해 본 연구는 리뷰 포스팅 경험이 있는 소비자 18명을 대상으로 심층 인터뷰를 진행하였다. 수집한 인터뷰 자료는 근거이론방법을 활용하여 분석되었으며, 코드 분석결과를 토대로 본 연구는 리뷰 포스팅의 동기요인(상호호혜성, 물질적 보상), 리뷰 브라우징 결정요인(리뷰내용에 대한 신뢰, 리뷰형식에 대한 선호), 그리고 그림자노동(스스로 해야 하는 일, 자발적 데이터 생산, 소비자의 몫)을 제안하였다. 더불어 이들 간의 다이내믹스를 제안하여 리뷰어의 리뷰 생성과 소비의 순환과정을 이론화하였다. 본 연구의 시도와 결과는 온라인 리뷰의 효과성에 집중되었던 기존 연구의 한계를 극복하는 데 학술적 기여가 가능하고, 온라인 리뷰 관리의 필요성이 커지고 있는 플랫폼 기업에 실무적 시사점을 제공한다는 점에서 의의가 있다.

여행 일정기반의 여행노트시스템 (Travel note system based travel schedule)

  • 박지훈;정호균;유홍렬
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
    • /
    • pp.257-259
    • /
    • 2017
  • 본 논문은 여행상품 일정의 POI정보를 기반으로 생성된 여행 스케줄러에 따라 실제 여행이 이루어지고 여행 중에 촬영된 사진과 여행자가 작성한 여행상품 리뷰 및 여행기 등의 정보를 매시업하여 여행노트를 생성하는 시스템을 구현하였다. 무엇보다 여행자가 일일이 자신의 여행 스케줄을 입력해야하는 번거로움을 없이 여행중에 편리성을 제공받을 수 있다.

  • PDF

Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안 (Effective Korean sentiment classification method using word2vec and ensemble classifier)

  • 박성수;이건창
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.133-140
    • /
    • 2018
  • 감성 분석에서 정확한 감성 분류는 중요한 연구 주제이다. 본 연구는 최근 많은 연구가 이루어지는 word2vec과 앙상블 방법을 이용하여 효과적으로 한국어 리뷰를 감성 분류하는 방법을 제시한다. 연구는 20 만 개의 한국 영화 리뷰 텍스트에 대해, 품사 기반 BOW 자질과 word2vec를 사용한 자질을 생성하고, 두 개의 자질 표현을 결합한 통합 자질을 생성했다. 감성 분류를 위해 Logistic Regression, Decision Tree, Naive Bayes, Support Vector Machine의 단일 분류기와 Adaptive Boost, Bagging, Gradient Boosting, Random Forest의 앙상블 분류기를 사용하였다. 연구 결과로 형용사와 부사를 포함한 BOW자질과 word2vec자질로 구성된 통합 자질 표현이 가장 높은 감성 분류 정확도를 보였다. 실증결과, 단일 분류기인 SVM이 가장 높은 성능을 나타내었지만, 앙상블 분류기는 단일 분류기와 비슷하거나 약간 낮은 성능을 보였다.

영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축 (A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier)

  • 김유영;송민
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.71-89
    • /
    • 2016
  • 누구나 본인이 사용한 제품이나, 이용한 서비스에 대한 후기를 자유롭게 인터넷에 작성할 수 있고, 이러한 데이터의 양은 점점 더 많아지고 있다. 감성분석은 사용자가 생성한 온라인 텍스트 속에 내포된 감성 및 감정을 식별하기 위해 사용된다. 본 연구는 다양한 데이터 도메인 중 영화 리뷰를 분석 대상으로 한다. 영화 리뷰를 이용한 기존 연구에서는 종종 리뷰 평점을 관객의 감성으로 동일시하여 감성분석에 이용한다. 그러나 리뷰 내용과 평점의 실제적 극성 정도가 항상 일치하는 것은 아니기 때문에 연구의 정확성에 한계가 발생할 수 있다. 이에 본 연구에서는 기계학습 기반의 감성 분류기를 구축하고, 이를 통해 리뷰의 감성점수를 산출하여 리뷰에서 나타나는 감성의 수치화를 목표로 한다. 나아가 산출된 감성점수를 이용하여 리뷰와 영화 흥행 간의 연관성을 살펴보았다. 감성분석 모델은 지지벡터 분류기와 신경망을 이용해 구축되었고, 총 1만 건의 영화 리뷰를 학습용 데이터로 하였다. 감성분석은 총 175편의 영화에 대한 1,258,538개의 리뷰에 적용하였다. 리뷰의 평점과 흥행, 그리고 감성점수와 흥행과의 연관성은 상관분석을 통해 살펴보았고, t-검정으로 두 지표의 평균차를 비교하여 감성점수의 활용성을 검증하였다. 연구 결과, 본 연구에서 제시하는 모델 구축 방법은 나이브 베이즈 분류기로 구축한 모델보다 높은 정확성을 보였다. 상관분석 결과로는, 영화의 주간 평균 평점과 관객 수 간의 유의미한 양의 상관관계가 나타났고, 감성점수와 관객 수 간의 상관분석에서도 유사한 결과가 도출되었다. 이에 두 지표간의 평균을 이용한 t-검정을 수행하고, 이를 바탕으로 산출한 감성점수를 리뷰 평점의 역할을 할 수 있는 지표로써 활용 가능함을 검증하였다. 나아가 검증된 결론을 근거로, 트위터에서 영화를 언급한 트윗을 수집하여 감성분석을 적용한 결과를 살펴봄으로써 감성분석 모델의 활용 방안을 모색하였다. 전체적 실험 및 검증의 과정을 통해 본 연구는 감성분석 연구에 있어 개선된 감성 분류 방법을 제시할 수 있음을 보였고, 이러한 점에서 연구의 의의가 있다.

Delete-Generate: 단어 n-gram의 삭제 및 생성에 기반한 한국어 스타일 변환 (Delete and Generate: Korean style transfer based on deleting and generating word n-grams)

  • 최형준;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.400-403
    • /
    • 2019
  • 스타일 변환(Style Transfer)은 주어진 문장의 긍정이나 부정 같은 속성을 변경하여 다른 속성을 갖는 문장으로 변환하는 과정을 의미한다. 본 연구에서는 스타일 변환을 위한 단어 n-그램 삭제의 기준을 확장하였고, 네이버 영화리뷰 데이터셋을 통해 이를 스타일 변환 이후 원래 문장의 스타일로부터 얼마나 차이가 나게 되었는지를 측정하였다. 측정은 감성분석기를 통해 이루어졌고, 기존 방법에 비해 6.28%p정도 높은 75.13%의 정확도를 보였다.

  • PDF

충격파 완화 복합재의 설계 (Design of Polymer Composites for Effective Shockwave Attenuation)

  • 박경민;조승래;김혜진;이재준
    • Composites Research
    • /
    • 제37권1호
    • /
    • pp.21-31
    • /
    • 2024
  • 이 리뷰 논문은 복합재에 함유되어 충격파를 감쇠하는 물질에 대한 탐구를 통해 폭발로 인한 외상성 뇌손상(bTBI)에 대비하여 인적자원을 보호하는 방법을 살펴보고자 한다. 이에 더하여 복합재의 충격파 감소의 정량화를 위한 충격파의 생성과 측정에 관련된 실험적인 방법들을 알아보고자 한다. 충격파는 고에너지 폭발물, 충격관, 레이저 및 레이저-플라이어 기술과 같은 다양한 접근법을 통해 생성이 가능하다. 충격파 전파 및 감쇠의 평가는 압전, 간섭계, 전자기 유도 및 스트릭 카메라 방법을 비롯한 첨단 기술을 활용하여 진행된다. 또한 충격파 압력감쇠 특성이 알려진 폴리우레아, 이온액체를 포함한 상분리 물질을 조사하였고 복합재 구조의 구성을 통해서 충격파를 감소시킬 수 있는 방법을 제시한다. 본 리뷰에서는 충격파 감쇠 물질 개발에 관한 연구를 종합하고 분석함으로써 폭발로 인한 외상성 뇌 손상에 대한 위험을 낮출 수 있는 재료적인 관점을 제시하고자 한다.