• Title/Summary/Keyword: 리뷰연구

Search Result 790, Processing Time 0.026 seconds

Performance Evaluation of Review Spam Detection for a Domestic Shopping Site Application (국내 쇼핑 사이트 적용을 위한 리뷰 스팸 탐지 방법의 성능 평가)

  • Park, Jihyun;Kim, Chong-kwon
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.339-343
    • /
    • 2017
  • As the number of customers who write fake reviews is increasing, online shopping sites have difficulty in providing reliable reviews. Fake reviews are called review spam, and they are written to promote or defame the product. They directly affect sales volume of the product; therefore, it is important to detect review spam. Review spam detection methods suggested in prior researches were only based on an international site even though review spam is a widespread problem in domestic shopping sites. In this paper, we have presented new review features of the domestic shopping site NAVER, and we have applied the formerly introduced method to this site for performing an evaluation.

Design and implementation of a satisfaction and category classifier for game reviews based on deep learning (딥러닝 기반 게임 리뷰 만족도 및 카테고리 분류 시스템 설계 및 개발)

  • Yang, Yu-Jeong;Lee, Bo-Hyun;Kim, Jin-Sil;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.729-732
    • /
    • 2018
  • 모바일 게임 산업의 발달로 많은 사용자들이 게임을 이용하면서, 그들의 만족감을 사용리뷰를 통해 드러낸다. 실제로 각 리뷰의 범주가 모두 다르지만 현재 구글 플레이 앱스토어(Google Play App Store)의 게임 리뷰 범주는 3가지로 매우 제한적이다. 따라서 본 연구에서는 빠르고 정확한 고객의 요구를 필요로 하는 게임 소프트웨어의 특성을 고려하여 게임 리뷰를 입력했을 때, 게임의 운영 및 시스템에 맞도록 리뷰의 카테고리를 세분화하고 만족도를 분석하는 시스템을 개발한다. 제안 시스템은 인공신경망 모델인 CNN을 평점을 기반으로 훈련시켜 리뷰에 대한 만족도를 도출한다. 또한 Word2Vec을 이용해 단어들 간의 유사도를 구하고, 이를 활용한 단어 배열을 이용하여 가장 스코어가 높은 카테고리로 배정한다. 본 논문은 제안한 리뷰 만족도 및 카테고리 분류 시스템이 실제 효과적으로 리뷰를 보다 의미 있는 정보로써 제공할 수 있음을 보인다.

An Exploratory Study on the Critics's Reviews Reported in the Press : Focusing on the Relationship Between Opinion Quality of Film Reviews and Box Office Performance (언론에 보도된 전문가 영화 리뷰에 관한 연구 : 영화 리뷰의 품질과 흥행성과의 관계를 중심으로)

  • Lee, Pu-Reum;Park, Seung-Hyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.7
    • /
    • pp.1-13
    • /
    • 2019
  • This study tried to explore the contents of film critics' reviews reported in the press. Based on fifty nine Korean movies with over 100,000 audience in 2017, this study collected 1113 reviews from fifty five movies with the exception of four without reviews. This study focused on the correlation between film's overall quality and four evaluation items such as directing, acting, story, and the visual. Examining the difference in the report timing of the review, the length of the review, and the intensity of the opinion, this study also analyzed the relationship between the internal aspects of reviews and box office performance. According to the results, the valence of critics' reviews was generally positive. Looking at the difference of reporting time, this valence was higher in the week before release than in the release week of film. The evaluation items of reviews were highly covered both before movie release and in the opening week. These were significantly declined in the second week of release. In the relationship between the number of reviews by each movie and box office performance, a positive correlation was found.

A Study of Factors Influencing Helpfulness of Game Reviews: Analyzing STEAM Game Review Data (게임 유용성 평가에 미치는 요인에 관한 연구: 스팀(STEAM) 게임 리뷰데이터 분석)

  • Kang, Ha-Na;Yong, Hye-Ryeon;Hwang, Hyun-Seok
    • Journal of Korea Game Society
    • /
    • v.17 no.3
    • /
    • pp.33-44
    • /
    • 2017
  • With the development of the Internet environment, various types of online reviews are being generated and exchanged among consumers to share their opinions. In line with this trend, companies are making efforts to analyze online reviews and use the results in various business activities such as marketing, sales, and product development. However, research on online review in industry related to 'Video Game' which is representative experience goods has not been performed enough. Therefore, this study analyzed STEAM community review data using machine learning techniques. We analyzed the factors affecting the opinion of other users' game review. We also propose managerial implications to incease user loyalty and usability.

Sentiment Analysis of movie review for predicting movie rating (영화리뷰 감성 분석을 통한 평점 예측 연구)

  • Jo, Jung-Tae;Choi, Sang-Hyun
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.161-177
    • /
    • 2015
  • Currently, the influence of the Internet portal sites that can make it quick and easy to contact the vast amount of information is increasing. Users can connect the Internet through a portal to obtain information, such as communication between Internet users, which can be used to meet a variety of purposes. People are exposed to a variety of information from other users in the search for a movie and get information. The impact on the reviews and ratings with the limited number of characters of the film allows users to form a relationship to the movie, decide whether you want to see the movie or find another movie. but, the user can not read the whole movie review. When user see the overall evaluation, the user can receive the correct information. This research conducted a study on the prediction of the rating by the use of review data. Information of reviews, is divided into two main areas: the"fact" and "opinion". "Fact" is to convey the dispassionate information and "Opinion" is, to represent the user's feelings. In this study, we built sentiment dictionary based on the assessment and evaluation of the online review and applied to evaluate other movies. In the comparative study with a simple emotion evaluation technique, we found the suggested algorithm got the more accurate results.

  • PDF

Analysis of the Relationship between Service Quality, Satisfaction and Repurchase Intention of On-line Fashion Shopping Malls and the Moderating Effect of Online Reviews (중국 온라인 패션쇼핑몰의 서비스 품질, 만족, 재구매의도간의 관계 및 온라인 리뷰의 조절효과 분석)

  • Jiang, Bao-Zhi;Lee, Young-sook;Lee, Jieun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.47-54
    • /
    • 2022
  • The development of the Internet of Things led to new services that did not exist before. This required a change to the existing network. This study aims to verify the service quality, satisfaction, repurchase intention relationship, and the moderating effect of online reviews of Chinese consumers using fashion shopping malls. The results of the study showed that from the perspective of consumers in their 20s and 30s in China, the type, reliability, convenience, and interaction of service quality had a positive effect on customer satisfaction and repurchase intention. In addition, negative reviews among online reviews had a great influence on repurchase intention. Based on the results of the study, it will help improve the effect on online product reviews and in-depth understanding of the acceptance of online product reviews for online fashion shopping malls, and establish strategies for fashion companies to effectively manage online product reviews information.

Evaluation Method of Technical Review in Software Development Process (소프트웨어 개발과정의 기술 리뷰 평가 방법)

  • Jeon, Heui-bae;Yang, Hae-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1234-1241
    • /
    • 2008
  • Cost effectiveness is greatly related with the degree of reducing the testing cost by the technical reviews. In this paper, we present a new metric My for evaluating the cost effectiveness of technical reviews during software development. First, we estimate and compare My with conventional measure using data collected during practical software development procedure, then we show the validity and usefulness of the proposed measure My. Also by formulating the relationship between the data collected during the reviews and the test, we present a method to estimate the value of the metric My using only the data collected during review phase.

Increasing Accuracy of Classifying Useful Reviews by Removing Neutral Terms (중립도 기반 선택적 단어 제거를 통한 유용 리뷰 분류 정확도 향상 방안)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.129-142
    • /
    • 2016
  • Customer product reviews have become one of the important factors for purchase decision makings. Customers believe that reviews written by others who have already had an experience with the product offer more reliable information than that provided by sellers. However, there are too many products and reviews, the advantage of e-commerce can be overwhelmed by increasing search costs. Reading all of the reviews to find out the pros and cons of a certain product can be exhausting. To help users find the most useful information about products without much difficulty, e-commerce companies try to provide various ways for customers to write and rate product reviews. To assist potential customers, online stores have devised various ways to provide useful customer reviews. Different methods have been developed to classify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most shopping websites provide customer reviews and offer the following information: the average preference of a product, the number of customers who have participated in preference voting, and preference distribution. Most information on the helpfulness of product reviews is collected through a voting system. Amazon.com asks customers whether a review on a certain product is helpful, and it places the most helpful favorable and the most helpful critical review at the top of the list of product reviews. Some companies also predict the usefulness of a review based on certain attributes including length, author(s), and the words used, publishing only reviews that are likely to be useful. Text mining approaches have been used for classifying useful reviews in advance. To apply a text mining approach based on all reviews for a product, we need to build a term-document matrix. We have to extract all words from reviews and build a matrix with the number of occurrences of a term in a review. Since there are many reviews, the size of term-document matrix is so large. It caused difficulties to apply text mining algorithms with the large term-document matrix. Thus, researchers need to delete some terms in terms of sparsity since sparse words have little effects on classifications or predictions. The purpose of this study is to suggest a better way of building term-document matrix by deleting useless terms for review classification. In this study, we propose neutrality index to select words to be deleted. Many words still appear in both classifications - useful and not useful - and these words have little or negative effects on classification performances. Thus, we defined these words as neutral terms and deleted neutral terms which are appeared in both classifications similarly. After deleting sparse words, we selected words to be deleted in terms of neutrality. We tested our approach with Amazon.com's review data from five different product categories: Cellphones & Accessories, Movies & TV program, Automotive, CDs & Vinyl, Clothing, Shoes & Jewelry. We used reviews which got greater than four votes by users and 60% of the ratio of useful votes among total votes is the threshold to classify useful and not-useful reviews. We randomly selected 1,500 useful reviews and 1,500 not-useful reviews for each product category. And then we applied Information Gain and Support Vector Machine algorithms to classify the reviews and compared the classification performances in terms of precision, recall, and F-measure. Though the performances vary according to product categories and data sets, deleting terms with sparsity and neutrality showed the best performances in terms of F-measure for the two classification algorithms. However, deleting terms with sparsity only showed the best performances in terms of Recall for Information Gain and using all terms showed the best performances in terms of precision for SVM. Thus, it needs to be careful for selecting term deleting methods and classification algorithms based on data sets.

A Study on the Enhancing Recommendation Performance Using the Linguistic Factor of Online Review based on Deep Learning Technique (딥러닝 기반 온라인 리뷰의 언어학적 특성을 활용한 추천 시스템 성능 향상에 관한 연구)

  • Dongsoo Jang;Qinglong Li;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.41-63
    • /
    • 2023
  • As the online e-commerce market growing, the need for a recommender system that can provide suitable products or services to customer is emerging. Recently, many studies using the sentiment score of online review have been proposed to improve the limitations of study on recommender systems that utilize only quantitative information. However, this methodology has limitation in extracting specific preference information related to customer within online reviews, making it difficult to improve recommendation performance. To address the limitation of previous studies, this study proposes a novel recommendation methodology that applies deep learning technique and uses various linguistic factors within online reviews to elaborately learn customer preferences. First, the interaction was learned nonlinearly using deep learning technique for the purpose to extract complex interactions between customer and product. And to effectively utilize online review, cognitive contents, affective contents, and linguistic style matching that have an important influence on customer's purchasing decisions among linguistic factors were used. To verify the proposed methodology, an experiment was conducted using online review data in Amazon.com, and the experimental results confirmed the superiority of the proposed model. This study contributed to the theoretical and methodological aspects of recommender system study by proposing a methodology that effectively utilizes characteristics of customer's preferences in online reviews.