고객들은 조작된 온라인 리뷰가 범람하는 가운데 진정성과 가치를 지닌 리뷰를 보고자한다. 귀인 이론(Attribution theory)의 관점에서, 사람들은 리뷰어의 과거 평가 이력을 바탕으로 리뷰가 진정성 있는지를 판단하는 경향이 있다. 이러한 배경에서 본 연구의 목적은 리뷰어의 과거 평점 이력이 조작된 리뷰로 인식하는 것에 어떠한 영향을 미치며, 최종적으로 리뷰 유용성이 어떠한 영향을 미치는지 알아보는 것이다. 제안된 가설을 검증하기 위해 2차 데이터 분석(연구1)과 실험(연구2)을 수행했으며, 두 연구는 일관된 결과를 보여준다. 연구 1은 리뷰어의 과거 평가 이력이 리뷰 유용성에 미치는 영향을 분석하였다. 귀인이론에 근거하면, 사람들은 리뷰를 다른 목적을 가지고 작성되었다고 인식할 경우에 리뷰가 조작되었다고 생각하고, 그 리뷰가 물건이나 서비스의 진정한 가치를 평가하지 않았다고 간주한다. 따라서 해당 리뷰는 유용성이 낮게 평가되는 경향이 있다. 2차 데이터를 분석하기 위해 우리는 Python을 이용한 웹 스크레이퍼를 개발하여 TripAdvisor(TripAdvisor.com)에서 호텔 정보, 리뷰, 리뷰 정보 등의 연구 데이터를 수집하였다. 수집한 890명 리뷰어에 대한 100,621개의 리뷰를 분석하기 위해 음이항 회귀 분석을 수행하였다. 분석 결과, 평균 평점을 낮게 주는 리뷰어의 경우에 리뷰 유용성에 유의미한 영향을 미치지 않는 것으로 나타났다. 사람들은 극단적인 평점을 거의 주지 않는 리뷰어가 작성한 리뷰가 더 도움이 된다고 평가했다. 연구 2는 리뷰어의 과거 평점 이력을 기준으로 리뷰가 조작되었다고 평가하는 사람들의 인식 프로세스를 실험하였다. 실험 결과, 사람들은 리뷰어의 과거 평점 이력이 평균적으로 평점을 낮게 주는 경우에는 리뷰가 의심스럽다고 판단하지 않는 것으로 나타났다. 그리고 사람들은 리뷰어가 대부분 극단적인 평점을 주는 이력이 있다면 해당 리뷰어가 작성한 리뷰가 의심스럽다고 판단하는 것으로 나타났다. 연구2는 사람들이 리뷰어의 과거 평점 이력을 바탕으로 리뷰가 조작되었는지 또는 리뷰가 도움이 되는지 판단하는 경향이 있음을 보여준다. 본 연구는 귀인이론을 바탕으로 리뷰어의 과거 평점 이력이 리뷰 조작성에 대한 인식과 리뷰 유용성에 미치는 영향을 분석하여, 해당 연구분야에 새로운 관점을 추가한 기여점이 있다.
고객의 구매 의사결정에 영향을 주는 온라인 리뷰의 부적절한 조작을 통해 이익을 얻고자 하는 기업 또는 온라인 판매자들 때문에, 리뷰의 신뢰성은 온라인 거래에서 매우 중요한 이슈가 되었다. 온라인 쇼핑몰 등에서 온라인 리뷰에 대한 소비자들의 의존도가 높아짐에 따라 많은 연구들이 조작된 리뷰를 탐지하는 방법에 개발하고자 하였다. 기존의 연구들은 온라인 리뷰를 기반으로 정상 리뷰와 조작된 리뷰를 대상으로 기계학습으로 이용함으로써 조작된 리뷰를 탐지하는 모형을 제시하였다. 기계학습은 데이터를 이용하여 이진분류 문제에서 탁월한 성능을 보여왔으나, 학습에 충분한 데이터를 확보할 수 있는 환경에서만 이러한 성능을 기대할 수 있었다. 조작된 리뷰는 학습용으로 사용할 수 있는 데이터가 충분하지 못하며, 이는 기계학습이 충분한 학습을 할 수 없다는 치명적 약점으로 내포하게 된다. 본 연구에서는 기계학습이 불균형 데이터 셋으로 인한 학습의 저하를 방지할 수 있는 방안으로 부족한 조작된 리뷰를 인공지능을 이용하여 생성하고 이를 기반으로 균형된 데이터 셋에서 기계학습을 학습하여 조작된 리뷰를 탐지하는 방안을 제시하였다. 파인 튜닝된 GPT-3는 초거대 인공지능으로 온라인 플랫폼의 리뷰를 생성하여 데이터 불균형 문제를 해결하는 오버샘플링 접근방법으로 사용되었다. GPT-3로 생성한 온라인 리뷰는 기존 리뷰를 기반으로 인공지능이 작성한 리뷰로써, 본 연구에서 사용된 로짓, 의사결정나무, 인공신경망의 성능을 개선시키는 것을 SMOTE와 단순 오버샘플링과 비교하여 실증분석을 통해서 확인하였다.
소프트웨어의 개발에서 테스트 비용을 적게 하는 유효한 기법중의 하나로 기술 리뷰의 실행이 있다. 본 연구에서는 기술 리뷰에 의한 테스트 비용의 감소율에 주목하여 새로운 리뷰 평가 척도 My를 제안한다. 그리고, 실제의 소프트웨어 개발 과정에서 수집한 데이터를 사용하여 종래의 척도와 비교, 평가를 하였다. 그 결과 종래의 평가척도에 대한 My의 우위성과 유효성이 실험적으로 확인되었다. 또한, 리뷰 공정에서 수집한 데이터와 테스트 공정에서 수집한 데이터와 관계를 조사해서, 리뷰 공정에서 가능한 데이터만을 이용하여 My의 값을 추정하는 방법에 대해서도 기술하였다.
본 연구에서는 영화 관람 후 높은 평점을 매긴 집단과 낮은 평점을 매긴 집단 중 어느 집단이 영화에 대해 더 많은 이야기를 하는지, 즉 온라인 리뷰를 길게 작성하는지에 대해 알아보고자 하였다. 이를 위해 네이버 영화 API에서 제공하는 영화 평점과 리뷰 데이터를 수집하였고, 한국영화진흥위원회에서 제공하는 영화 손익분기점 데이터를 이용하여 영화를 흥행성공, 흥행부진, 흥행실패로 구분하여 영화 평점과 리뷰길이 간의 상관관계, 영화 개봉 전과 후, 흥행여부에 따른 리뷰길이의 특성, 마지막으로 영화 평점이 리뷰길이에 영향을 미치는가에 대한 회귀분석을 실시하여 제시하였다.
프랜차이즈 스토어를 대상으로 소셜 빅데이터 분석을 수행할 경우, 프랜차이즈에 속한 여러 분점의 리뷰들이 함께 수집될 수 있어 분석 결과가 왜곡될 수 있다. 이 경우 분석 정확도를 높이기 위해서는 분석 대상이 아닌 타 분점의 리뷰들을 적절히 필터링할 수 있어야 한다. 본 논문에서는 프랜차이즈 스토어들의 특성을 반영한 소셜 빅데이터 분석 방법을 제안한다. 제안 방법은 검색어 설정 방법과 리뷰 필터링 방법을 포함한다. 검색어 설정을 위해, 소상공인진흥공단에서 제공하는 공공데이터를 기반으로 검색에 필요한 지역명을 추출한다. 그리고 리뷰 필터링을 위해, 네이버 및 카카오 등에서 제공하는 검색 API를 이용하여 프랜차이즈 분점 정보를 알아내고, 분석 대상이 아닌 타 분점의 리뷰들을 필터링하는데 이용한다. 제안 방법의 검증을 위해 온라인에서 수집된 실제 리뷰를 대상으로 실험을 수행하였으며, 제안 방법의 리뷰 필터링 정확도는 평균 93.6%로 조사되었다.
웹이 정보 교환의 주된 수단으로 사용되면서, 온라인 리뷰의 중요도가 증가하는 동시에 사용자의 올바른 의사결정을 저해하는 의견 스팸 이슈가 부각되고 있으며, 관련 연구가 활발하게 진행되고 있다. 하지만 분석 및 학습에 필요한 기준 데이터셋의 부족함과 한계점들은 관련 연구의 발전을 더디게 하고 있다. 본 논문에서는 사실 리뷰를 모사한 새로운 형태의 Paraphrased Opinion Spam(POS) 데이터셋을 소개한다. 우리는 실제 스패머들이 스팸을 작성할 때 실제 리뷰를 참고한다는 경향에 착안하여, 실제 리뷰어들이 작성한 리뷰를 의역하는 과정을 통하여 본문에 포함되어 있는 사실 정보와 경험을 담은 스팸 데이터 셋을 생성하였다. 실험 결과, 새롭게 생성된 POS 데이터셋이 언어학적으로 실제 리뷰들과 유사하여 스팸 분류 모델을 이용하여 분류 시 기존의 데이터셋들보다 더 분류하기 힘들다는 것을 발견했다. 또한 데이터의 학습량에 따라서 스팸 리뷰의 분류 정확도가 비례적으로 증가하는 것을 확인함으로써, 데이터의 양이 스팸 분류 모델 성능에 중요한 요소로 작용한다는 것을 확인할 수 있었다.
현대 사회에서 패션 시장의 규모는 해외와 국내 모두 지속적으로 증가하고 있다. 전자상거래를 통해 상품을 구입하는 경우 다른 소비자들이 작성한 상품에 대한 평가 데이터는 소비자가 상품의 구입 여부를 결정하는데에 영향을 미친다. 기업의 입장에서도 상품에 대한 소비자의 평가 데이터를 분석하여 소비자의 피드백을 반영한다면 기업의 성과에 긍정적인 영향을 미칠 수 있다. 이에 본 논문에서는 아마존 패션 상품의 리뷰 데이터를 학습하여 형성된 워드임베딩 공간을 이용하여 사용자의 감성을 분석하는 모델을 구축하는 방법을 제안한다. 실험은 아마존 리뷰 데이터 570만건을 학습하여 형성된 워드임베딩 공간을 이용하여 긍정, 부정 리뷰 데이터의 개수에 따라 총 3개의 SVM 분류기 모델을 학습하는 방식으로 진행하였다. 실험 결과 긍정 리뷰 데이터 5만건, 부정 리뷰데이터 5만건을 이용하여 SVM 분류기를 학습하였을 때 88.0%로 가장 높은 정확도(accuracy)를 나타냈다.
개방, 공유, 참여를 특징으로 하는 웹 2.0 시대로 들어서면서 인터넷 사용자들의 데이터 생산 및 공유가 쉬워졌다. 이에 따른 데이터의 기하급수적인 증가와 함께 디지털 정보의 대부분인 비정형적 데이터(Unstructured Data)의 양도 증가하고 있다. 인터넷에서 정해진 형식 없이 자연어 형태로 만들어진 비정형 데이터 중, 특정 상품들에 대해 개인이 평가한 리뷰들은 해당 기업이나 해당 상품에 관심이 있는 잠재적 고객에게 필요한 데이터이다. 많은 양의 리뷰 데이터에서 상품에 대한 유용한 정보를 얻기 위해서는 데이터 수집, 저장, 전처리, 분석, 및 결론 도출의 과정이 필요하다. 따라서 본 연구는 R을 이용한 텍스트 마이닝(Text Mining) 기법을 사용하여 텍스트 형식의 비정형 데이터에서 자연어 처리 기술 및 문서 처리 기술을 적용하여 정형화된 데이터 값을 도출하는 방법에 대해 소개한다. 또한, 도출된 정형화된 리뷰 정보를 데이터 마이닝 기법에 적용하여 목적에 맞게 맞춤화된 리뷰 정보를 도출시키는 방안을 제시하고자 한다.
본 연구는 BERT 기반 자연어처리 모델들을 미세 조정하여 한국어 리뷰 데이터를 대상으로 감성 분석을 수행하는 방법을 제안한다. 이 과정에서 입력 시퀀스 길이에 변화를 주어 그 성능을 비교 분석함으로써 입력 시퀀스 길이에 따른 최적의 성능을 탐구하고자 한다. 이를 위해 의류 쇼핑 플랫폼 M사에서 수집한 텍스트 리뷰 데이터를 활용한다. 웹 스크래핑을 통해 리뷰 데이터를 수집하고, 데이터 전처리 단계에서는 긍정 및 부정 만족도 점수 라벨을 재조정하여 분석의 정확성을 높였다. 구체적으로, GPT-4 API를 활용하여 리뷰 텍스트의 실제 감성을 반영한 라벨을 재설정하고, 데이터 불균형 문제를 해결하기 위해 6:4 비율로 데이터를 조정하였다. 의류 쇼핑 플랫폼에 존재하는 리뷰들을 평균적으로 약 12 토큰의 길이를 띄었으며, 이에 적합한 최적의 모델을 제공하기 위해 모델링 단계에서는 BERT기반 사전학습 모델 5가지를 활용하여 입력 시퀀스 길이와 메모리 사용량에 집중하여 성능을 비교하였다. 실험 결과, 입력 시퀀스 길이가 64일 때 대체적으로 가장 적절한 성능 및 메모리 사용량을 나타내는 경향을 띄었다. 특히, KcELECTRA 모델이 입력 시퀀스 길이 64에서 가장 최적의 성능 및 메모리 사용량을 보였으며, 이를 통해 한국어 리뷰 데이터의 감성 분석에서 92%이상의 정확도와 신뢰성을 달성할 수 있었다. 더 나아가, BERTopic을 활용하여 새로 입력되는 리뷰 데이터를 카테고리별로 분류하고, 최종 구축한 모델로 각 카테고리에 대한 감성 점수를 추출하는 한국어 리뷰 감성 분석 프로세스를 제공한다.
최근 AI 스피커 시장의 규모가 급속도 커지면서 AI 스피커의 다양한 활용 가능성이 크게 주목받고 있다. 소비자들이 다양한 채널을 통해 제품을 사용한 경험을 표현하고 공유하는 환경을 만들어 졌고, 그로 인하여 소비자가 제품을 이용한 경험에 대한 다양하고 솔직한 생각을 남긴 리뷰들의 양이 방대해졌는데, 이러한 리뷰데이터는 소비자의 생각을 분석하는 데에 매우 유용하다고 할 수 있다. 본 연구에서는 이 리뷰데이터를 활용하여 AI 스피커 지속적인 사용에 영향을 미치는 요인에 대하여 분석하고자 하였다. 무엇보다 선행연구를 통하여 도출된 AI 사용의도에 영향을 미치는 7가지 요인들이 실제로 소비자들이 남기는 리뷰에서도 나타나는 요인인지를 확인하고자 하였다. 이를 위해, Amazon.com의 아마존 에코 제품에 대한 고객 리뷰데이터를 기반으로 하여 텍스트마이닝과 사회관계망 분석을 활용하여 분석하였다. 리뷰데이터를 긍정리뷰와 부정리뷰로 분류하고 전처리하여 도출된 단어들 간 연결성을 중심으로 AI 스피커의 지속적인 사용에 영향을 미치는 요인을 분류하고자 연결 중심성 분석을 하였으며, 이를 통해 연결성의 위치가 비슷한 단어들 간 분류를 하기 위하여 CONCOR 분석을 하였다. 긍정 리뷰 연구 결과, 소비자들은 AI 스피커 지속적 사용에 영향을 미치는 요인으로 의인화와 친밀성을 가장 중요하게 보았다. 이 두 요인들은 다른 요인들과도 강한 연결 관계를 보여주었고, 선행연구에서 도출된 요인 외에 연결성도 중요한 요인임을 도출하였다. 또한 추가적으로 부정적인 리뷰 분석 결과, 인식오류와 호환성이 AI 스피커 사용에 있어서 소비자들에게 부정적인 영향을 주는 주요 요인들로 도출되었다. 이러한 연구 결과를 토대로 본 연구에서는 소비자들이 아마존 에코 제품을 지속적으로 사용하게 하는 구체적인 방법에 대하여 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.